DI-smartcross - Decision Intelligence Platform for Traffic Crossing Signal Control

Overview

DI-smartcross

icon

DI-smartcross - Decision Intelligence Platform for Traffic Crossing Signal Control.

DI-smartcross is application platform under OpenDILab

Instruction

DI-smartcross is an open-source traffic crossing signal control platform. DI-smartcross applies several Reinforcement Learning policies training & evaluation for traffic signal control system in provided road nets.

DI-smartcross uses DI-engine, a Reinforcement Learning platform to build RL experiments. DI-smartcross uses SUMO (Simulation of Urban MObility) traffic simulator package to run signal control simulation.

DI-smartcross supports:

  • Single-Agent and Multi-Agent Reinforcement Learning
  • Synthetic and Real roadnet, Arterial and Grid network shape
  • Customizable observation, action and reward types
  • Easily achieve Multi-Environment Parallel, Actor-Learner Asynchronous Parallel when training with DI-engine

Installation

DI-smartcross supports SUMO version >= 1.6.0. Here we show an easy guide of installation with SUMO 1.8.0 on Linux.

Install sumo

  1. install required libraries and dependencies
sudo apt-get install cmake python g++ libxerces-c-dev libfox-1.6-dev libgdal-dev libproj-dev libgl2ps-dev swig
  1. download and unzip the installation package
tar xzf sumo-src-1.8.0.tar.gz
cd sumo-1.8.0
pwd 
  1. compile sumo
mkdir build/cmake-build
cd build/cmake-build
cmake ../..
make -j $(nproc)
  1. environment variables
echo 'export PATH=$HOME/sumo-1.8.0/bin:$PATH
export SUMO_HOME=$HOME/sumo-1.8.0' | tee -a $HOME/.bashrc
source ~/.bashrc
  1. check install
sumo

If success, the following message will be shown in the shell.

Eclipse SUMO sumo Version 1.8.0
  Build features: Linux-3.10.0-957.el7.x86_64 x86_64 GNU 5.3.1 Release Proj GUI SWIG GDAL GL2PS
  Copyright (C) 2001-2020 German Aerospace Center (DLR) and others; https://sumo.dlr.de
  License EPL-2.0: Eclipse Public License Version 2 <https://eclipse.org/legal/epl-v20.html>
  Use --help to get the list of options.

Install DI-smartcross

To install DI-smartcross, simply run pip install in the root folder of this repository. This will automatically insall DI-engine as well.

pip install -e . --user

Quick Start

Run training and evaluation

DI-smartcross supports DQN, Off-policy PPO and Rainbow DQN RL methods with multi-discrete actions for each crossing. A set of default DI-engine configs is provided for each policy. You can check the document of DI-engine to get detail instructions of these configs.

  • train RL policies
usage: sumo_train [-h] -d DING_CFG -e ENV_CFG [-s SEED] [--dynamic-flow]
                  [-cn COLLECT_ENV_NUM] [-en EVALUATE_ENV_NUM]
                  [--exp-name EXP_NAME]

DI-smartcross training script

optional arguments:
  -h, --help            show this help message and exit
  -d DING_CFG, --ding-cfg DING_CFG
                        DI-engine configuration path
  -e ENV_CFG, --env-cfg ENV_CFG
                        sumo environment configuration path
  -s SEED, --seed SEED  random seed for sumo
  --dynamic-flow        use dynamic route flow
  -cn COLLECT_ENV_NUM, --collect-env-num COLLECT_ENV_NUM
                        collector sumo env num for training
  -en EVALUATE_ENV_NUM, --evaluate-env-num EVALUATE_ENV_NUM
                        evaluator sumo env num for training
  --exp-name EXP_NAME   experiment name to save log and ckpt

Example of running DQN in wj3 env with default config.

sumo_train -e smartcross/envs/sumo_arterial_wj3_default_config.yaml -d entry/config/sumo_wj3_dqn_default_config.py
  • evaluate existing policies
usage: sumo_eval [-h] [-d DING_CFG] -e ENV_CFG [-s SEED]
                 [-p {random,fix,dqn,rainbow,ppo}] [--dynamic-flow]
                 [-n ENV_NUM] [--gui] [-c CKPT_PATH]

DI-smartcross training script

optional arguments:
  -h, --help            show this help message and exit
  -d DING_CFG, --ding-cfg DING_CFG
                        DI-engine configuration path
  -e ENV_CFG, --env-cfg ENV_CFG
                        sumo environment configuration path
  -s SEED, --seed SEED  random seed for sumo
  -p {random,fix,dqn,rainbow,ppo}, --policy-type {random,fix,dqn,rainbow,ppo}
                        RL policy type
  --dynamic-flow        use dynamic route flow
  -n ENV_NUM, --env-num ENV_NUM
                        sumo env num for evaluation
  --gui                 open gui for visualize
  -c CKPT_PATH, --ckpt-path CKPT_PATH
                        model ckpt path

Example of running random policy in wj3 env.

sumo_eval -p random -e smartcross/envs/sumo_arterial_wj3_default_config.yaml     

Environments

sumo env configuration

The configuration of sumo env is stored in a config .yaml file. You can take a look at the default config file to see how to modify env settings.

import yaml
from easy_dict import EasyDict
from smartcross.env import SumoEnv

with open('smartcross/envs/sumo_arterial_wj3_default_config.yaml') as f:
    cfg = yaml.safe_load(f)
cfg = EasyDict(cfg)
env = SumoEnv(config=cfg.env)

The env configuration consists of basic definition and observation\action\reward settings. The basic definition includes the cumo config file, episode length and light duration. The obs\action\reward define the detail setting of each contains.

env:
    sumocfg_path: 'arterial_wj3/rl_wj.sumocfg'
    max_episode_steps: 1500
    green_duration: 10
    yellow_duration: 3
    obs:
        ...
    action:
        ...
    reward:
        ...

Observation

We provide several types of observations of a traffic cross. If use_centrolized_obs is set True, the observation of each cross will be concatenated into one vector. The contents of observation can me modified by setting obs_type. The following observation is supported now.

  • phase: One-hot phase vector of current cross signal
  • lane_pos_vec: Lane occupancy in each grid position. The grid num can be set with lane_grid_num
  • traffic_volumn: Traffic volumn of each lane. Vehicle num / lane length * volumn ratio
  • queue_len: Vehicle waiting queue length of each lane. Waiting num / lane length * volumn ratio

Action

Sumo environment supports changing cross signal to target phase. The action space is set to multi-discrete for each cross to reduce action num.

Reward

Reward can be set with reward_type. Reward is calculated cross by cross. If use_centrolized_obs is set True, the reward of each cross will be summed up.

  • queue_len: Vehicle waiting queue num of each lane
  • wait_time: Wait time increment of vehicles in each lane
  • delay_time: Delay time of all vahicles in incomming and outgoing lanes
  • pressure: Pressure of a cross

Contributing

We appreciate all contributions to improve DI-smartcross, both algorithms and system designs.

License

DI-smartcross released under the Apache 2.0 license.

Citation

@misc{smartcross,
    title={{DI-smartcross: OpenDILab} Decision Intelligence platform for Traffic Crossing Signal Control},
    author={DI-smartcross Contributors},
    publisher = {GitHub},
    howpublished = {\url{`https://github.com/opendilab/DI-smartcross`}},
    year={2021},
}
Comments
  • style(hus): update email address

    style(hus): update email address

    Description

    Related Issue

    TODO

    Check List

    • [ ] merge the latest version source branch/repo, and resolve all the conflicts
    • [ ] pass style check
    • [ ] pass all the tests
    opened by TuTuHuss 0
  • update and fix typo in docs

    update and fix typo in docs

    Description

    Related Issue

    TODO

    Check List

    • [ ] merge the latest version source branch/repo, and resolve all the conflicts
    • [ ] pass style check
    • [ ] pass all the tests
    opened by RobinC94 0
  • update envs, docs and actions

    update envs, docs and actions

    Description

    Related Issue

    TODO

    Check List

    • [ ] merge the latest version source branch/repo, and resolve all the conflicts
    • [ ] pass style check
    • [ ] pass all the tests
    opened by RobinC94 0
  • Dev

    Dev

    Description

    Related Issue

    TODO

    Check List

    • [ ] merge the latest version source branch/repo, and resolve all the conflicts
    • [ ] pass style check
    • [ ] pass all the tests
    opened by RobinC94 0
  • Merge branch 'main' into dev

    Merge branch 'main' into dev

    Description

    None

    Related Issue

    TODO

    Check List

    • [ ] merge the latest version source branch/repo, and resolve all the conflicts
    • [ ] pass style check
    • [ ] pass all the tests
    opened by RobinC94 0
  • update readme

    update readme

    Description

    Related Issue

    TODO

    Check List

    • [ ] merge the latest version source branch/repo, and resolve all the conflicts
    • [ ] pass style check
    • [ ] pass all the tests
    opened by RobinC94 0
  • suit for 0.3.0

    suit for 0.3.0

    Description

    Related Issue

    TODO

    Check List

    • [ ] merge the latest version source branch/repo, and resolve all the conflicts
    • [ ] pass style check
    • [ ] pass all the tests
    opened by RobinC94 0
  • v0.1.0 update

    v0.1.0 update

    Description

    add cityflow env suit ding 0.3

    Related Issue

    TODO

    Check List

    • [ ] merge the latest version source branch/repo, and resolve all the conflicts
    • [ ] pass style check
    • [ ] pass all the tests
    opened by RobinC94 0
  • Dev: Version 0.0.1

    Dev: Version 0.0.1

    Description

    Related Issue

    TODO

    Check List

    • [ ] merge the latest version source branch/repo, and resolve all the conflicts
    • [ ] pass style check
    • [ ] pass all the tests
    opened by RobinC94 0
  • Dev: update obs helper, mappo; update configs

    Dev: update obs helper, mappo; update configs

    Description

    update obs helper, mappo; add arterial7; update configs

    Related Issue

    TODO

    Check List

    • [ ] merge the latest version source branch/repo, and resolve all the conflicts
    • [ ] pass style check
    • [ ] pass all the tests
    opened by RobinC94 0
  • add different settings for ppo

    add different settings for ppo

    Description

    Related Issue

    TODO

    Check List

    • [ ] merge the latest version source branch/repo, and resolve all the conflicts
    • [ ] pass style check
    • [ ] pass all the tests
    opened by kxzxvbk 0
Releases(v0.1.0)
Owner
OpenDILab
Open sourced Decision Intelligence (DI)
OpenDILab
LVI-SAM: Tightly-coupled Lidar-Visual-Inertial Odometry via Smoothing and Mapping

LVI-SAM This repository contains code for a lidar-visual-inertial odometry and mapping system, which combines the advantages of LIO-SAM and Vins-Mono

Tixiao Shan 1.1k Dec 27, 2022
Fast Differentiable Matrix Sqrt Root

Official Pytorch implementation of ICLR 22 paper Fast Differentiable Matrix Square Root

YueSong 42 Dec 30, 2022
This repo contains the code for paper Inverse Weighted Survival Games

Inverse-Weighted-Survival-Games This repo contains the code for paper Inverse Weighted Survival Games instructions general loss function (--lfn) can b

3 Jan 12, 2022
ExCon: Explanation-driven Supervised Contrastive Learning

ExCon: Explanation-driven Supervised Contrastive Learning Link to the paper: https://arxiv.org/pdf/2111.14271.pdf Contributors of this repo: Zhibo Zha

Zhibo (Darren) Zhang 18 Nov 01, 2022
A booklet on machine learning systems design with exercises

Machine Learning Systems Design Read this booklet here. This booklet covers four main steps of designing a machine learning system: Project setup Data

Chip Huyen 7.6k Jan 08, 2023
This is a repository for a No-Code object detection inference API using the OpenVINO. It's supported on both Windows and Linux Operating systems.

OpenVINO Inference API This is a repository for an object detection inference API using the OpenVINO. It's supported on both Windows and Linux Operati

BMW TechOffice MUNICH 68 Nov 24, 2022
Read Like Humans: Autonomous, Bidirectional and Iterative Language Modeling for Scene Text Recognition

Read Like Humans: Autonomous, Bidirectional and Iterative Language Modeling for Scene Text Recognition The official code of ABINet (CVPR 2021, Oral).

334 Dec 31, 2022
Code for the head detector (HeadHunter) proposed in our CVPR 2021 paper Tracking Pedestrian Heads in Dense Crowd.

Head Detector Code for the head detector (HeadHunter) proposed in our CVPR 2021 paper Tracking Pedestrian Heads in Dense Crowd. The head_detection mod

Ramana Sundararaman 76 Dec 06, 2022
Train Scene Graph Generation for Visual Genome and GQA in PyTorch >= 1.2 with improved zero and few-shot generalization.

Scene Graph Generation Object Detections Ground truth Scene Graph Generated Scene Graph In this visualization, woman sitting on rock is a zero-shot tr

Boris Knyazev 93 Dec 28, 2022
Using Convolutional Neural Networks (CNN) for Semantic Segmentation of Breast Cancer Lesions (BRCA)

Using Convolutional Neural Networks (CNN) for Semantic Segmentation of Breast Cancer Lesions (BRCA). Master's thesis documents. Bibliography, experiments and reports.

Erick Cobos 73 Dec 04, 2022
Official Pytorch Implementation for Splicing ViT Features for Semantic Appearance Transfer presenting Splice

Splicing ViT Features for Semantic Appearance Transfer [Project Page] Splice is a method for semantic appearance transfer, as described in Splicing Vi

Omer Bar Tal 253 Jan 06, 2023
Super-Fast-Adversarial-Training - A PyTorch Implementation code for developing super fast adversarial training

Super-Fast-Adversarial-Training This is a PyTorch Implementation code for develo

LBK 26 Dec 02, 2022
This tool converts a Nondeterministic Finite Automata (NFA) into a Deterministic Finite Automata (DFA)

This tool converts a Nondeterministic Finite Automata (NFA) into a Deterministic Finite Automata (DFA)

Quinn Herden 1 Feb 04, 2022
An OpenAI Gym environment for multi-agent car racing based on Gym's original car racing environment.

Multi-Car Racing Gym Environment This repository contains MultiCarRacing-v0 a multiplayer variant of Gym's original CarRacing-v0 environment. This env

Igor Gilitschenski 56 Nov 01, 2022
This repository contains the code and models necessary to replicate the results of paper: How to Robustify Black-Box ML Models? A Zeroth-Order Optimization Perspective

Black-Box-Defense This repository contains the code and models necessary to replicate the results of our recent paper: How to Robustify Black-Box ML M

OPTML Group 2 Oct 05, 2022
YOLOv5 detection interface - PyQt5 implementation

所有代码已上传,直接clone后,运行yolo_win.py即可开启界面。 2021/9/29:加入置信度选择 界面是在ultralytics的yolov5基础上建立的,界面使用pyqt5实现,内容较简单,娱乐而已。 功能: 模型选择 本地文件选择(视频图片均可) 开关摄像头

487 Dec 27, 2022
Its a Plant Leaf Disease Detection System based on Machine Learning.

My_Project_Code Its a Plant Leaf Disease Detection System based on Machine Learning. I have used Tomato Leaves Dataset from kaggle. This system detect

Sanskriti Sidola 3 Jun 15, 2022
基于pytorch构建cyclegan示例

cyclegan-demo 基于Pytorch构建CycleGAN示例 如何运行 准备数据集 将数据集整理成4个文件,分别命名为 trainA, trainB:训练集,A、B代表两类图片 testA, testB:测试集,A、B代表两类图片 例如 D:\CODE\CYCLEGAN-DEMO\DATA

Koorye 3 Oct 18, 2022
Sparse Progressive Distillation: Resolving Overfitting under Pretrain-and-Finetune Paradigm

Sparse Progressive Distillation: Resolving Overfitting under Pretrain-and-Finetu

3 Dec 05, 2022
Export CenterPoint PonintPillars ONNX Model For TensorRT

CenterPoint-PonintPillars Pytroch model convert to ONNX and TensorRT Welcome to CenterPoint! This project is fork from tianweiy/CenterPoint. I impleme

CarkusL 149 Dec 13, 2022