Open-source code for Generic Grouping Network (GGN, CVPR 2022)

Overview

Open-World Instance Segmentation: Exploiting Pseudo Ground Truth From Learned Pairwise Affinity

Pytorch implementation for "Open-World Instance Segmentation: Exploiting Pseudo Ground Truth From Learned Pairwise Affinity" (CVPR 2022, link TBD) by Weiyao Wang, Matt Feiszli, Heng Wang, Jitendra Malik, and Du Tran. We propose a framework for open-world instance segmentation, Generic Grouping Network (GGN), which exploits pseudo Ground Truth training strategy. On the same backbone, GGN produces impressive AR gains compared to closed-world training on cross-category generalization (+11% VOC to Non-VOC) and cross-dataset generalization (+5.2% COCO to UVO).

What is it? Open-world instance segmentation requires a model to group pixels into object instances without a pre-defined taxonomy, that is, both "seen" categories (those present during training) and "unseen" categories (not seen during training). There is generally a large performance gap between the seen and unseen domains. For example, a baseline Mask R-CNN miss 15 annotated masks in the example below. Without additional training data or annotations, Mask R-CNN trained with GGN framework produces 9 more segments correctly, being much closer to ground truth annotations.

How we do it? Our approach first learns a pairwise affinity predictor that captures correctly if two pixels belong to same instance or not. We demonstrate such pairwise affinity representation generalizes well to unseen domains. We then use a grouping module (e.g. MCG) to extract and rank segments from predicted PA. We can run this on any image dataset without using annotations; we extract highest ranked segments as "pseudo ground truth" candidate masks. This is a large and category-agnostic set; we add it to our (much smaller) datasets of curated annotations to train a detector.


About the code. This repo is built based on mmdetection with the addition of OLN backbone (concurrent work). The repo is tested under Python 3.7, PyTorch 1.7.0, Cuda 11.0, and mmcv==1.2.5. We thank authors of OLN for releasing their work to facilitate research.

Model zoo

Below we release PA predictor models, pseudo-GT generated by PA predictors and GGN trained with both annotated-GT and pseudo-GT. We also release some of the processed annotations from LVIS to conduct cross-category generalization experiments.

Training Eval url Baseline AR GGN AR Top-K Pseudo
Person, COCO Non-Person, COCO PA/Pseudo/GGN 4.9 20.9 3
VOC, COCO Non-VOC, COCO PA/Pseudo/Pseudo-OLN/ GGN/GGN-OLN 19.9 28.7 (33.7 with OLN) 3
COCO, LVIS Non-COCO, LVIS PA/Pseudo/GGN 16.5 20.4 1
Non-COCO, LVIS COCO PA/Pseudo/GGN 21.7 23.6 1
COCO UVO PA/Pseudo/GGN 40.1 43.4 3
COCO, random init ImageNet PA/Pseudo/GGN 10

We remark using large-scale pre-training in the last row as initialization and finetune GGN on COCO with pseudo-GT on COCO gives further improvement (45.3 on UVO), with model.

Installation

This repo is built based on mmdetection.

You can use following commands to create conda env with related dependencies.

conda create -n ggn python=3.7 -y
conda activate ggn
conda install pytorch=1.7.0 torchvision cudatoolkit=11.0 -c pytorch -y
pip install mmcv-full
pip install -r requirements.txt
pip install -v -e .

Please also refer to get_started.md for more details of installation.

Next you will need to build the library for our grouping module:

cd pa_lib/cython_lib
python3 setup.py build_ext --inplace

Data Preparation

Download and extract COCO 2017 train and val images with annotations from http://cocodataset.org. We expect the directory structure to be the following:

path/to/coco/
  annotations/  # annotation json files
  train2017/    # train images
  val2017/      # val images

Our work also uses LVIS, UVO and ADE20K. To use ADE20K, please convert them into COCO-style annotations.

Training of pairwise affinity predictor

bash tools/dist_train.sh configs/pairwise_affinity/pa_train.py ${NUM_GPUS} --work-dir ${WORK_DIR}

Test PA

We provide a tool tools/test_pa.py to directly evaluate PA performance (e.g. on PA prediction and on grouped masks).

python tools/test_pa.py configs/pairwise_affinity/pa_train.py ${WORK_DIR}/latest.pth --eval pa --eval-proposals --test-partition nonvoc

Extracting pseudo-GT masks

We first begin by extracting masks. Example config pa_extract.py extracts pseudo-GT masks from PA trained on VOC subsets of COCO. use-gt-masks flag asks the pipeline to compute maximum IoU an extracted masks has with the GT. It is recommended to split the dataset into multiple shards to run extractions. On original image resolution and Nvidia V100 machine, it takes about 4.8s per image to run the full pipeline (compute PA, run grouping, ranking then compute IoU with annotated GT) without globalization and trained ranker or 10s with globalization and trained ranker.

python tools/extract_pa_masks.py configs/pairwise_affinity/pa_extract.py ${PA_MODEL_PATH} --out ${OUT_DIR}/masks.json --use-gt-masks 1

The extracted masks will be stored in JSON with the following format

[
  [segm1, segm2,..., segm20] ## Result of an image
  ...
]

We refer to tools/merge_annotations.py for reference on formatting the extracted masks as a new COCO-style annotation file. We remark that tools/interpolate_extracted_masks.py may be necessary if not running extraction on original image resolution.

Training of GGN

Please specify additional_ann_file with the extracted pseudo-GT in previous step in class_agn_mask_rcnn_pa.py.

bash tools/dist_train.sh configs/mask_rcnn/class_agn_mask_rcnn_pa.py ${NUM_GPUS}

class_agn_mask_rcnn_gn_online.py is used to train ImageNet extracted masks since there are too many annotations and we cannot store everything in a single json file without OOM. We will need to break it into per-image annotations in the format of "{image_id}.json".

Testing

python tools/test.py configs/mask_rcnn/class_agn_mask_rcnn.py ${WORK_DIR}/latest.pth --eval segm

To cite this work

@article{wang2022ggn,
  title={Open-World Instance Segmentation: Exploiting Pseudo Ground Truth From Learned Pairwise Affinity},
  author={Wang, Weiyao and Feiszli, Matt and Wang, Heng and Malik, Jitendra and Tran, Du},
  journal={CVPR},
  year={2022}
}

License

This project is under the CC-BY-NC 4.0 license. See LICENSE for details.

Owner
Meta Research
Meta Research
An example of semantic segmentation using tensorflow in eager execution.

Semantic segmentation using Tensorflow eager execution Requirement Python 2.7+ Tensorflow-gpu OpenCv H5py Scikit-learn Numpy Imgaug Train with eager e

Iñigo Alonso Ruiz 25 Sep 29, 2022
Rotated Box Is Back : Accurate Box Proposal Network for Scene Text Detection

Rotated Box Is Back : Accurate Box Proposal Network for Scene Text Detection This material is supplementray code for paper accepted in ICDAR 2021 We h

NCSOFT 30 Dec 21, 2022
The world's simplest facial recognition api for Python and the command line

Face Recognition You can also read a translated version of this file in Chinese 简体中文版 or in Korean 한국어 or in Japanese 日本語. Recognize and manipulate fa

Adam Geitgey 46.9k Jan 03, 2023
Official code for the paper: Deep Graph Matching under Quadratic Constraint (CVPR 2021)

QC-DGM This is the official PyTorch implementation and models for our CVPR 2021 paper: Deep Graph Matching under Quadratic Constraint. It also contain

Quankai Gao 55 Nov 14, 2022
auto-tuning momentum SGD optimizer

YellowFin YellowFin is an auto-tuning optimizer based on momentum SGD which requires no manual specification of learning rate and momentum. It measure

Jian Zhang 288 Nov 19, 2022
Tensorflow 2.x implementation of Vision-Transformer model

Vision Transformer Unofficial Tensorflow 2.x implementation of the Transformer based Image Classification model proposed by the paper AN IMAGE IS WORT

Soumik Rakshit 16 Jul 20, 2022
UNION: An Unreferenced Metric for Evaluating Open-ended Story Generation

UNION Automatic Evaluation Metric described in the paper UNION: An UNreferenced MetrIc for Evaluating Open-eNded Story Generation (EMNLP 2020). Please

50 Dec 30, 2022
This is a project based on ConvNets used to identify whether a road is clean or dirty. We have used MobileNet as our base architecture and the weights are based on imagenet.

PROJECT TITLE: CLEAN/DIRTY ROAD DETECTION USING TRANSFER LEARNING Description: This is a project based on ConvNets used to identify whether a road is

Faizal Karim 3 Nov 06, 2022
Implementation of the Swin Transformer in PyTorch.

Swin Transformer - PyTorch Implementation of the Swin Transformer architecture. This paper presents a new vision Transformer, called Swin Transformer,

597 Jan 03, 2023
Official PyTorch implementation of the NeurIPS 2021 paper StyleGAN3

Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation of the NeurIPS 2021 paper Alias-Free Generative Adversarial Net

Eugenio Herrera 92 Nov 18, 2022
[CVPR 2020] Interpreting the Latent Space of GANs for Semantic Face Editing

InterFaceGAN - Interpreting the Latent Space of GANs for Semantic Face Editing Figure: High-quality facial attributes editing results with InterFaceGA

GenForce: May Generative Force Be with You 1.3k Dec 29, 2022
Course on computational design, non-linear optimization, and dynamics of soft systems at UIUC.

Computational Design and Dynamics of Soft Systems · This is a repository that contains the source code for generating the lecture notes, handouts, exe

Tejaswin Parthasarathy 4 Jul 21, 2022
From this paper "SESNet: A Semantically Enhanced Siamese Network for Remote Sensing Change Detection"

SESNet for remote sensing image change detection It is the implementation of the paper: "SESNet: A Semantically Enhanced Siamese Network for Remote Se

1 May 24, 2022
Official repository for the ISBI 2021 paper Transformer Assisted Convolutional Neural Network for Cell Instance Segmentation

SegPC-2021 This is the official repository for the ISBI 2021 paper Transformer Assisted Convolutional Neural Network for Cell Instance Segmentation by

Datascience IIT-ISM 13 Dec 14, 2022
Pytorch implementation of YOLOX、PPYOLO、PPYOLOv2、FCOS an so on.

简体中文 | English miemiedetection 概述 miemiedetection是女装大佬咩酱基于YOLOX进行二次开发的个人检测库(使用的深度学习框架为pytorch),支持Windows、Linux系统,以女装大佬咩酱的名字命名。miemiedetection是一个不需要安装的

248 Jan 02, 2023
How Effective is Incongruity? Implications for Code-mix Sarcasm Detection.

Code for the paper: How Effective is Incongruity? Implications for Code-mix Sarcasm Detection - ICON ACL 2021

2 Jun 05, 2022
INSPIRED: A Transparent Dialogue Dataset for Interactive Semantic Parsing

INSPIRED: A Transparent Dialogue Dataset for Interactive Semantic Parsing Existing studies on semantic parsing focus primarily on mapping a natural-la

7 Aug 22, 2022
Neighborhood Reconstructing Autoencoders

Neighborhood Reconstructing Autoencoders The official repository for Neighborhood Reconstructing Autoencoders (Lee, Kwon, and Park, NeurIPS 2021). T

Yonghyeon Lee 24 Dec 14, 2022
Stock-Prediction - prediction of stock market movements using sentiment analysis and deep learning.

Stock-Prediction- In this project, we aim to enhance the prediction of stock market movements using sentiment analysis and deep learning. We divide th

5 Jan 25, 2022
A Distributional Approach To Controlled Text Generation

A Distributional Approach To Controlled Text Generation This is the repository code for the ICLR 2021 paper "A Distributional Approach to Controlled T

NAVER 102 Jan 07, 2023