PyTorch implementation of VAGAN: Visual Feature Attribution Using Wasserstein GANs

Overview

PyTorch implementation of VAGAN: Visual Feature Attribution Using Wasserstein GANs

This code aims to reproduce results obtained in the paper "Visual Feature Attribution using Wasserstein GANs" (official repo, TensorFlow code)

Description

This repository contains the code to reproduce results for the paper cited above, where the authors presents a novel feature attribution technique based on Wasserstein Generative Adversarial Networks (WGAN). The code works for both synthetic (2D) and real 3D neuroimaging data, you can check below for a brief description of the two datasets.

anomaly maps examples

Here is an example of what the generator/mapper network should produce: ctrl-click on the below image to open the gifv in a new tab (one frame every 50 iterations, left: input, right: anomaly map for synthetic data at iteration 50 * (its + 1)).

anomaly maps examples

Synthetic Dataset

"Data: In order to quantitatively evaluate the performance of the examined visual attribution methods, we generated a synthetic dataset of 10000 112x112 images with two classes, which model a healthy control group (label 0) and a patient group (label 1). The images were split evenly across the two categories. We closely followed the synthetic data generation process described in [31][SubCMap: Subject and Condition Specific Effect Maps] where disease effects were studied in smaller cohorts of registered images. The control group (label 0) contained images with ran- dom iid Gaussian noise convolved with a Gaussian blurring filter. Examples are shown in Fig. 3. The patient images (label 1) also contained the noise, but additionally exhib- ited one of two disease effects which was generated from a ground-truth effect map: a square in the centre and a square in the lower right (subtype A), or a square in the centre and a square in the upper left (subtype B). Importantly, both dis- ease subtypes shared the same label. The location of the off-centre squares was randomly offset in each direction by a maximum of 5 pixels. This moving effect was added to make the problem harder, but had no notable effect on the outcome."

image

ADNI Dataset

Currently we only implemented training on synthetic dataset, we will work on implement training on ADNI dataset asap (but pull requests are welcome as always), we put below ADNI dataset details for sake of completeness.

"We selected 5778 3D T1-weighted MR images from 1288 subjects with either an MCI (label 0) or AD (label 1) diagnosis from the ADNI cohort. 2839 of the images were acquired using a 1.5T magnet, the remainder using a 3T magnet. The subjects are scanned at regular intervals as part of the ADNI study and a number of subjects converted from MCI to AD over the years. We did not use these cor- respondences for training, however, we took advantage of it for evaluation as will be described later. All images were processed using standard operations available in the FSL toolbox [52][Advances in functional and structural MR image analysis and implementation as FSL.] in order to reorient and rigidly register the images to MNI space, crop them and correct for field inhomogeneities. We then skull-stripped the images using the ROBEX algorithm [24][Robust brain extraction across datasets and comparison with publicly available methods]. Lastly, we resampled all images to a resolution of 1.3 mm 3 and nor- malised them to a range from -1 to 1. The final volumes had a size of 128x160x112 voxels."

"Data used in preparation of this article were obtained from the Alzheimers disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf"

Usage

Training

To train the WGAN on this task, cd into this repo's src root folder and execute:

$ python train.py

This script takes the following command line options:

  • dataset_root: the root directory where tha dataset is stored, default to '../dataset'

  • experiment: directory in where samples and models will be saved, default to '../samples'

  • batch_size: input batch size, default to 32

  • image_size: the height / width of the input image to network, default to 112

  • channels_number: input image channels, default to 1

  • num_filters_g: number of filters for the first layer of the generator, default to 16

  • num_filters_d: number of filters for the first layer of the discriminator, default to 16

  • nepochs: number of epochs to train for, default to 1000

  • d_iters: number of discriminator iterations per each generator iter, default to 5

  • learning_rate_g: learning rate for generator, default to 1e-3

  • learning_rate_d: learning rate for discriminator, default to 1e-3

  • beta1: beta1 for adam. default to 0.0

  • cuda: enables cuda (store True)

  • manual_seed: input for the manual seeds initializations, default to 7

Running the command without arguments will train the models with the default hyperparamters values (producing results shown above).

Models

We ported all models found in the original repository in PyTorch, you can find all implemented models here: https://github.com/orobix/Visual-Feature-Attribution-Using-Wasserstein-GANs-Pytorch/tree/master/src/models

Useful repositories and code

  • vagan-code: Reposiory for the reference paper from its authors

  • ganhacks: Starter from "How to Train a GAN?" at NIPS2016

  • WassersteinGAN: Code accompanying the paper "Wasserstein GAN"

  • wgan-gp: Pytorch implementation of Paper "Improved Training of Wasserstein GANs".

  • c3d-pytorch: Model used as discriminator in the reference paper

  • Pytorch-UNet: Model used as genertator in this repository

  • dcgan: Model used as discriminator in this repository

.bib citation

cite the paper as follows (copied-pasted it from arxiv for you):

@article{DBLP:journals/corr/abs-1711-08998,
  author    = {Christian F. Baumgartner and
               Lisa M. Koch and
               Kerem Can Tezcan and
               Jia Xi Ang and
               Ender Konukoglu},
  title     = {Visual Feature Attribution using Wasserstein GANs},
  journal   = {CoRR},
  volume    = {abs/1711.08998},
  year      = {2017},
  url       = {http://arxiv.org/abs/1711.08998},
  archivePrefix = {arXiv},
  eprint    = {1711.08998},
  timestamp = {Sun, 03 Dec 2017 12:38:15 +0100},
  biburl    = {http://dblp.org/rec/bib/journals/corr/abs-1711-08998},
  bibsource = {dblp computer science bibliography, http://dblp.org}
}

License

This project is licensed under the MIT License

Copyright (c) 2018 Daniele E. Ciriello, Orobix Srl (www.orobix.com).

Owner
Orobix
Orobix
Pytorch implementation of U-Net, R2U-Net, Attention U-Net, and Attention R2U-Net.

pytorch Implementation of U-Net, R2U-Net, Attention U-Net, Attention R2U-Net U-Net: Convolutional Networks for Biomedical Image Segmentation https://a

leejunhyun 2k Jan 02, 2023
Tensors and Dynamic neural networks in Python with strong GPU acceleration

PyTorch is a Python package that provides two high-level features: Tensor computation (like NumPy) with strong GPU acceleration Deep neural networks b

61.4k Jan 04, 2023
Source code for "UniRE: A Unified Label Space for Entity Relation Extraction.", ACL2021.

UniRE Source code for "UniRE: A Unified Label Space for Entity Relation Extraction.", ACL2021. Requirements python: 3.7.6 pytorch: 1.8.1 transformers:

Wang Yijun 109 Nov 29, 2022
CowHerd is a partially-observed reinforcement learning environment

CowHerd is a partially-observed reinforcement learning environment, where the player walks around an area and is rewarded for milking cows. The cows try to escape and the player can place fences to h

Danijar Hafner 6 Mar 06, 2022
Ppq - A powerful offline neural network quantization tool with custimized IR

PPL Quantization Tool(PPL 量化工具) PPL Quantization Tool (PPQ) is a powerful offlin

605 Jan 03, 2023
Keras-1D-NN-Classifier

Keras-1D-NN-Classifier This code is based on the reference codes linked below. reference 1, reference 2 This code is for 1-D array data classification

Jae-Hoon Shim 6 May 18, 2021
RuDOLPH: One Hyper-Modal Transformer can be creative as DALL-E and smart as CLIP

[Paper] [Хабр] [Model Card] [Colab] [Kaggle] RuDOLPH 🦌 🎄 ☃️ One Hyper-Modal Tr

Sber AI 230 Dec 31, 2022
[Official] Exploring Temporal Coherence for More General Video Face Forgery Detection(ICCV 2021)

Exploring Temporal Coherence for More General Video Face Forgery Detection(FTCN) Yinglin Zheng, Jianmin Bao, Dong Chen, Ming Zeng, Fang Wen Accepted b

57 Dec 28, 2022
A fast python implementation of Ray Tracing in One Weekend using python and Taichi

ray-tracing-one-weekend-taichi A fast python implementation of Ray Tracing in One Weekend using python and Taichi. Taichi is a simple "Domain specific

157 Dec 26, 2022
This repository contains the source code of an efficient 1D probabilistic model for music time analysis proposed in ICASSP2022 venue.

Jump Reward Inference for 1D Music Rhythmic State Spaces An implementation of the probablistic jump reward inference model for music rhythmic informat

Mojtaba Heydari 25 Dec 16, 2022
Key information extraction from invoice document with Graph Convolution Network

Key Information Extraction from Scanned Invoices Key information extraction from invoice document with Graph Convolution Network Related blog post fro

Phan Hoang 39 Dec 16, 2022
A small demonstration of using WebDataset with ImageNet and PyTorch Lightning

A small demonstration of using WebDataset with ImageNet and PyTorch Lightning This is a small repo illustrating how to use WebDataset on ImageNet. usi

50 Dec 16, 2022
Official code for "EagerMOT: 3D Multi-Object Tracking via Sensor Fusion" [ICRA 2021]

EagerMOT: 3D Multi-Object Tracking via Sensor Fusion Read our ICRA 2021 paper here. Check out the 3 minute video for the quick intro or the full prese

Aleksandr Kim 276 Dec 30, 2022
UNet model with VGG11 encoder pre-trained on Kaggle Carvana dataset

TernausNet: U-Net with VGG11 Encoder Pre-Trained on ImageNet for Image Segmentation By Vladimir Iglovikov and Alexey Shvets Introduction TernausNet is

Vladimir Iglovikov 1k Dec 28, 2022
An open-access benchmark and toolbox for electricity price forecasting

epftoolbox The epftoolbox is the first open-access library for driving research in electricity price forecasting. Its main goal is to make available a

97 Dec 05, 2022
The codes of paper 'Active-LATHE: An Active Learning Algorithm for Boosting the Error exponent for Learning Homogeneous Ising Trees'

Active-LATHE: An Active Learning Algorithm for Boosting the Error exponent for Learning Homogeneous Ising Trees This project contains the codes of pap

0 Apr 20, 2022
ARKitScenes - A Diverse Real-World Dataset for 3D Indoor Scene Understanding Using Mobile RGB-D Data

ARKitScenes This repo accompanies the research paper, ARKitScenes - A Diverse Real-World Dataset for 3D Indoor Scene Understanding Using Mobile RGB-D

Apple 371 Jan 05, 2023
Pytorch implementation of DeePSiM

Pytorch implementation of DeePSiM

1 Nov 05, 2021
[Machine Learning Engineer Basic Guide] 부스트캠프 AI Tech - Product Serving 자료

Boostcamp-AI-Tech-Product-Serving 부스트캠프 AI Tech - Product Serving 자료 Repository 구조 part1(MLOps 개론, Model Serving, 머신러닝 프로젝트 라이프 사이클은 별도의 코드가 없으며, part

Sung Yun Byeon 269 Dec 21, 2022