李云龙二次元风格化!打滚卖萌,使用了animeGANv2进行了视频的风格迁移

Overview

李云龙二次元风格化!一键star、fork,你也可以生成这样的团长!

打滚卖萌求star求fork!

0.效果展示

1.模型简介

1.1AnimeGANv2

本文使用了animeGANv2进行了视频的风格迁移。
animeGANv2,顾名思义,是其前作AnimeGAN的改进版,改进方向主要在以下4点:

  • 解决了生成的图像中的高频伪影问题。
  • 它易于训练,并能直接达到论文所述的效果。
  • 进一步减少生成器网络的参数数量。(现在生成器大小 8.17Mb)
  • 尽可能多地使用来自BD电影的新的高质量的风格数据。
    效果图参考:
    animeGANv2
    本文则是使用了paddlepaddle预训练好的animeGANv2模型对李云龙名场面视频进行了风格化迁移,详情请看下文分解。

2.实现思路

flow

3.素材准备

首先要找到自己要操作的视频素材,将视频的音频单独提取出来备用
我自己找的资源放在了codes/videos/liyunlong文件夹下,是李云龙名场面:
你咋不敢跟旅长干一架呢!→旅长我给你跪下了 名场面

4.代码实操:

话不多说,首先是环境的基本配置

  • 安装基本环境
!pip install -r codes/PaddleGAN-develop/requirements.txt
  • 导入基本环境
import paddle 
import os 
import sys 
sys.path.insert(0,'codes/PaddleGAN-develop')
from ppgan.apps import AnimeGANPredictor

5.GAN它!

友情提示:此处最好使用GPU环境,cpu推理属实是有点点慢
进行模型的推理:

使用paddlepaddle预训练好的animeGANv2模型对视频进行风格迁移:
from ppgan.apps import AnimeGANPredictor
import cv2

predictor = AnimeGANPredictor('',None,)
video_src = 'codes/videos/liyunlong/格式工厂混流 亮剑-03+亮剑-03+亮剑-04 00_00_23-.mp4'
video_ = cv2.VideoCapture(video_src)
video_name_ = os.path.basename(video_src)
total_frames = video_.get(cv2.CAP_PROP_FRAME_COUNT)
fps_ = video_.get(cv2.CAP_PROP_FPS)
print("video {}, fps:{}, total frames:{}...".format(video_name_, fps_, total_frames))
frame_count_ = 0
save_per_frames = 1
dst_dir = 'codes/videos/liyunlong/'
out_video = cv2.VideoWriter('{}/hayao_{}'.format(dst_dir, video_name_),
                                cv2.VideoWriter_fourcc(*'DIVX'), int(fps_),
                                (int(video_.get(3)), int(video_.get(4))))
print('now begin...')
while True:
    ret_, frame_ = video_.read()
    if not ret_:  # or len(fps_list_) == 0:
        print('end of video...')
        break
    result_frame = predictor.anime_image_only(frame_)
    if frame_count_ % save_per_frames == 0:
        out_video.write(result_frame)
    frame_count_ = frame_count_ + 1
    if frame_count_ % 100 == 0:
        print("{}/{} processed...".format(frame_count_, int(total_frames)), flush=False)

6.最终视频

合成最终所需要的视频:

# 合并生成的视频和之前分离的音频:
!ffmpeg -i codes/videos/liyunlong/hayao_格式工厂混流 亮剑-03+亮剑-03+亮剑-04 00_00_23-.mp4 -i codes/videos/liyunlong/音频1.aac -c:v copy -c:a aac -strict experimental codes/videos/liyunlong/李云龙二次元化.mp4

这样就大功告成啦~~~
你可以在此基础上:

  • 更换你喜欢的视频
  • 更换其他paddle预训练好的模型
  • 甚至可以尝试自己动手训练定制化的模型!

打滚卖萌求star、fork!

PaddleGAN 的基础上做了些微小的改动,鸣谢.

Owner
oukohou
Hello there.
oukohou
Face Mask Detection on Image and Video using tensorflow and keras

Face-Mask-Detection Face Mask Detection on Image and Video using tensorflow and keras Train Neural Network on face-mask dataset using tensorflow and k

Nahid Ebrahimian 12 Nov 11, 2022
A curated list of awesome neural radiance fields papers

Awesome Neural Radiance Fields A curated list of awesome neural radiance fields papers, inspired by awesome-computer-vision. How to submit a pull requ

Yen-Chen Lin 3.9k Dec 27, 2022
Self-Supervised Monocular DepthEstimation with Internal Feature Fusion(arXiv), BMVC2021

DIFFNet This repo is for Self-Supervised Monocular Depth Estimation with Internal Feature Fusion(arXiv), BMVC2021 A new backbone for self-supervised d

Hang 94 Dec 25, 2022
codes for Self-paced Deep Regression Forests with Consideration on Ranking Fairness

Self-paced Deep Regression Forests with Consideration on Ranking Fairness This is official codes for paper Self-paced Deep Regression Forests with Con

Learning in Vision 4 Sep 11, 2022
Implementation of [Time in a Box: Advancing Knowledge Graph Completion with Temporal Scopes].

Time2box Implementation of [Time in a Box: Advancing Knowledge Graph Completion with Temporal Scopes].

LingCai 4 Aug 23, 2022
Official implementation of Rich Semantics Improve Few-Shot Learning (BMVC, 2021)

Rich Semantics Improve Few-Shot Learning Paper Link Abstract : Human learning benefits from multi-modal inputs that often appear as rich semantics (e.

Mohamed Afham 11 Jul 26, 2022
Baseline of DCASE 2020 task 4

Couple Learning for SED This repository provides the data and source code for sound event detection (SED) task. The improvement of the Couple Learning

21 Oct 18, 2022
(ICCV 2021) ProHMR - Probabilistic Modeling for Human Mesh Recovery

ProHMR - Probabilistic Modeling for Human Mesh Recovery Code repository for the paper: Probabilistic Modeling for Human Mesh Recovery Nikos Kolotouros

Nikos Kolotouros 209 Dec 13, 2022
A PyTorch Implementation of Single Shot MultiBox Detector

SSD: Single Shot MultiBox Object Detector, in PyTorch A PyTorch implementation of Single Shot MultiBox Detector from the 2016 paper by Wei Liu, Dragom

Max deGroot 4.8k Jan 07, 2023
ALIbaba's Collection of Encoder-decoders from MinD (Machine IntelligeNce of Damo) Lab

AliceMind AliceMind: ALIbaba's Collection of Encoder-decoders from MinD (Machine IntelligeNce of Damo) Lab This repository provides pre-trained encode

Alibaba 1.4k Jan 01, 2023
Code and real data for the paper "Counterfactual Temporal Point Processes", available at arXiv.

counterfactual-tpp This is a repository containing code and real data for the paper Counterfactual Temporal Point Processes. Pre-requisites This code

Networks Learning 11 Dec 09, 2022
This is the solution for 2nd rank in Kaggle competition: Feedback Prize - Evaluating Student Writing.

Feedback Prize - Evaluating Student Writing This is the solution for 2nd rank in Kaggle competition: Feedback Prize - Evaluating Student Writing. The

Udbhav Bamba 41 Dec 14, 2022
VSR-Transformer - This paper proposes a new Transformer for video super-resolution (called VSR-Transformer).

VSR-Transformer By Jiezhang Cao, Yawei Li, Kai Zhang, Luc Van Gool This paper proposes a new Transformer for video super-resolution (called VSR-Transf

Jiezhang Cao 225 Nov 13, 2022
This is a computer vision based implementation of the popular childhood game 'Hand Cricket/Odd or Even' in python

Hand Cricket Table of Content Overview Installation Game rules Project Details Future scope Overview This is a computer vision based implementation of

Abhinav R Nayak 6 Jan 12, 2022
Trustworthy AI related projects

Trustworthy AI This repository aims to include trustworthy AI related projects from Huawei Noah's Ark Lab. Current projects include: Causal Structure

HUAWEI Noah's Ark Lab 589 Dec 30, 2022
Technical experimentations to beat the stock market using deep learning :chart_with_upwards_trend:

DeepStock Technical experimentations to beat the stock market using deep learning. Experimentations Deep Learning Stock Prediction with Daily News Hea

Keon 449 Dec 29, 2022
Self-supervised learning algorithms provide a way to train Deep Neural Networks in an unsupervised way using contrastive losses

Self-supervised learning Self-supervised learning algorithms provide a way to train Deep Neural Networks in an unsupervised way using contrastive loss

Arijit Das 2 Mar 26, 2022
Knowledgeable Prompt-tuning: Incorporating Knowledge into Prompt Verbalizer for Text Classification

Knowledgeable Prompt-tuning: Incorporating Knowledge into Prompt Verbalizer for Text Classification

DingDing 143 Jan 01, 2023
repro_eval is a collection of measures to evaluate the reproducibility/replicability of system-oriented IR experiments

repro_eval repro_eval is a collection of measures to evaluate the reproducibility/replicability of system-oriented IR experiments. The measures were d

IR Group at Technische Hochschule Köln 9 May 25, 2022
Segment axon and myelin from microscopy data using deep learning

Segment axon and myelin from microscopy data using deep learning. Written in Python. Using the TensorFlow framework. Based on a convolutional neural network architecture. Pixels are classified as eit

NeuroPoly 103 Nov 29, 2022