(NeurIPS 2021) Realistic Evaluation of Transductive Few-Shot Learning

Overview

Realistic evaluation of transductive few-shot learning

Introduction

This repo contains the code for our NeurIPS 2021 submitted paper "Realistic evaluation of transductive few-shot learning". This is a framework that regroups all methods evaluated in our paper except for SIB and LR-ICI. Results provided in the paper can be reproduced with this repo. Code was developed under python 3.8.3 and pytorch 1.4.0.

1. Getting started

1.1 Quick installation (recommended) (Download datasets and models)

To download datasets and pre-trained models (checkpoints), follow instructions 1.1.1 to 1.1.2 of NeurIPS 2020 paper "TIM: Transductive Information Maximization" public implementation (https://github.com/mboudiaf/TIM)

1.1.1 Place datasets

Make sure to place the downloaded datasets (data/ folder) at the root of the directory.

1.1.2 Place models

Make sure to place the downloaded pre-trained models (checkpoints/ folder) at the root of the directory.

1.2 Manual installation

Follow instruction 1.2 of NeurIPS 2020 paper "TIM: Transductive Information Maximization" public implementation (https://github.com/mboudiaf/TIM) if facing issues with previous steps. Make sure to place data/ and checkpoints/ folders at the root of the directory.

2. Requirements

To install requirements:

conda create --name <env> --file requirements.txt

Where <env> is the name of your environment

3. Reproducing the main results

Before anything, activate the environment:

source activate <env>

3.1 Table 1 and 2 results in paper

Evaluation in a 5-shot scenario on mini-Imagenet using RN-18 as backbone (Table 1. in paper)

Method 1-shot 5-shot 10-shot 20-shot
SimpleShot 63.0 80.1 84.0 86.1
PT-MAP 60.1 (↓16.8) 67.1 (↓18.2) 68.8 (↓18.0) 70.4 (↓17.4)
LaplacianShot 65.4 (↓4.7) 81.6 (↓0.5) 84.1 (↓0.2) 86.0 (↑0.5)
BDCSPN 67.0 (↓2.4) 80.2 (↓1.8) 82.7 (↓1.4) 84.6 (↓1.1)
TIM 67.3 (↓4.5) 79.8 (↓4.1) 82.3 (↓3.8) 84.2 (↓3.7)
α-TIM 67.4 82.5 85.9 87.9

To reproduce the results from Table 1. and 2. in the paper, from the root of the directory execute this python command.

python3 -m src.main --base_config <path_to_base_config_file> --method_config <path_to_method_config_file> 

The <path_to_base_config_file> follows this hierarchy:

config/<balanced or dirichlet>/base_config/<resnet18 or wideres>/<mini or tiered or cub>/base_config.yaml

The <path_to_method_config_file> follows this hierarchy:

config/<balanced or dirichlet>/methods_config/<alpha_tim or baseline or baseline_pp or bdcspn or entropy_min or laplacianshot or protonet or pt_map or simpleshot or tim>.yaml

For instance, if you want to reproduce the results in the balanced setting on mini-Imagenet, using ResNet-18, with alpha-TIM method go to the root of the directory and execute:

python3 -m src.main --base_config config/balanced/base_config/resnet18/mini/base_config.yaml --method_config config/balanced/methods_config/alpha_tim.yaml

If you want to reproduce the results in the randomly balanced setting on mini-Imagenet, using ResNet-18, with alpha-TIM method go to the root of the directory and execute:

python3 -m src.main --base_config config/dirichlet/base_config/resnet18/mini/base_config.yaml --method_config config/dirichlet/methods_config/alpha_tim.yaml

Reusable data sampler module

One of our main contribution is our realistic task sampling method following Dirichlet's distribution. plot

Our realistic sampler can be found in sampler.py file. The sampler has been implemented following Pytorch's norms and in a way that it can be easily reused and integrated in other projects.

The following notebook exemple_realistic_sampler.ipynb is an exemple that shows how to initialize and use our realistic category sampler.

Contact

For further questions or details, reach out to Olivier Veilleux ([email protected])

Acknowledgements

Special thanks to the authors of NeurIPS 2020 paper "TIM: Transductive Information Maximization" (TIM) (https://github.com/mboudiaf/TIM) for publicly sharing their pre-trained models and their source code from which this repo was inspired from.

Owner
Olivier Veilleux
Olivier Veilleux
Curriculum Domain Adaptation for Semantic Segmentation of Urban Scenes, ICCV 2017

AdaptationSeg This is the Python reference implementation of AdaptionSeg proposed in "Curriculum Domain Adaptation for Semantic Segmentation of Urban

Yang Zhang 128 Oct 19, 2022
[NeurIPS-2020] Self-paced Contrastive Learning with Hybrid Memory for Domain Adaptive Object Re-ID.

Self-paced Contrastive Learning (SpCL) The official repository for Self-paced Contrastive Learning with Hybrid Memory for Domain Adaptive Object Re-ID

Yixiao Ge 286 Dec 21, 2022
Deep deconfounded recommender (Deep-Deconf) for paper "Deep causal reasoning for recommendations"

Deep Causal Reasoning for Recommender Systems The codes are associated with the following paper: Deep Causal Reasoning for Recommendations, Yaochen Zh

Yaochen Zhu 22 Oct 15, 2022
Decoding the Protein-ligand Interactions Using Parallel Graph Neural Networks

Decoding the Protein-ligand Interactions Using Parallel Graph Neural Networks Requirements python 0.10+ rdkit 2020.03.3.0 biopython 1.78 openbabel 2.4

Neeraj Kumar 3 Nov 23, 2022
Code for the paper: "On the Bottleneck of Graph Neural Networks and Its Practical Implications"

On the Bottleneck of Graph Neural Networks and its Practical Implications This is the official implementation of the paper: On the Bottleneck of Graph

75 Dec 22, 2022
A universal framework for learning timestamp-level representations of time series

TS2Vec This repository contains the official implementation for the paper Learning Timestamp-Level Representations for Time Series with Hierarchical C

Zhihan Yue 284 Dec 30, 2022
Pytorch implementation of MalConv

MalConv-Pytorch A Pytorch implementation of MalConv Desciprtion This is the implementation of MalConv proposed in Malware Detection by Eating a Whole

Alexander H. Liu 58 Oct 26, 2022
A hyperparameter optimization framework

Optuna: A hyperparameter optimization framework Website | Docs | Install Guide | Tutorial Optuna is an automatic hyperparameter optimization software

7.4k Jan 04, 2023
Convert Table data to approximate values with GUI

Table_Editor Convert Table data to approximate values with GUIs... usage - Import methods for extension Tables. Imported method supposed to have only

CLJ 1 Jan 10, 2022
NeurIPS 2021, self-supervised 6D pose on category level

SE(3)-eSCOPE video | paper | website Leveraging SE(3) Equivariance for Self-Supervised Category-Level Object Pose Estimation Xiaolong Li, Yijia Weng,

Xiaolong 63 Nov 22, 2022
TensorFlow implementation of ENet

TensorFlow-ENet TensorFlow implementation of ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation. This model was tested on th

Kwotsin 255 Oct 17, 2022
Using LSTM to detect spoofing attacks in an Air-Ground network

Using LSTM to detect spoofing attacks in an Air-Ground network Specifications IDE: Spider Packages: Tensorflow 2.1.0 Keras NumPy Scikit-learn Matplotl

Tiep M. H. 1 Nov 20, 2021
Dynamical movement primitives (DMPs), probabilistic movement primitives (ProMPs), spatially coupled bimanual DMPs.

Movement Primitives Movement primitives are a common group of policy representations in robotics. There are many different types and variations. This

DFKI Robotics Innovation Center 63 Jan 06, 2023
This is a model to classify Vietnamese sign language using Motion history image (MHI) algorithm and CNN.

Vietnamese sign lagnuage recognition using MHI and CNN This is a model to classify Vietnamese sign language using Motion history image (MHI) algorithm

Phat Pham 3 Feb 24, 2022
This repository contains the code and models for the following paper.

DC-ShadowNet Introduction This is an implementation of the following paper DC-ShadowNet: Single-Image Hard and Soft Shadow Removal Using Unsupervised

AuAgCu 65 Dec 27, 2022
[ECCV 2020] XingGAN for Person Image Generation

Contents XingGAN or CrossingGAN Installation Dataset Preparation Generating Images Using Pretrained Model Train and Test New Models Evaluation Acknowl

Hao Tang 218 Oct 29, 2022
[NeurIPS 2021] "Drawing Robust Scratch Tickets: Subnetworks with Inborn Robustness Are Found within Randomly Initialized Networks" by Yonggan Fu, Qixuan Yu, Yang Zhang, Shang Wu, Xu Ouyang, David Cox, Yingyan Lin

Drawing Robust Scratch Tickets: Subnetworks with Inborn Robustness Are Found within Randomly Initialized Networks Yonggan Fu, Qixuan Yu, Yang Zhang, S

12 Dec 11, 2022
InterFaceGAN - Interpreting the Latent Space of GANs for Semantic Face Editing

InterFaceGAN - Interpreting the Latent Space of GANs for Semantic Face Editing Figure: High-quality facial attributes editing results with InterFaceGA

GenForce: May Generative Force Be with You 1.3k Jan 09, 2023
Convenient tool for speeding up the intern/officer review process.

icpc-app-screen Convenient tool for speeding up the intern/officer applicant review process. Eliminates the pain from reading application responses of

1 Oct 30, 2021
Very deep VAEs in JAX/Flax

Very Deep VAEs in JAX/Flax Implementation of the experiments in the paper Very Deep VAEs Generalize Autoregressive Models and Can Outperform Them on I

Jamie Townsend 42 Dec 12, 2022