ToR[e]cSys is a PyTorch Framework to implement recommendation system algorithms

Overview

ToR[e]cSys


News

It is happy to know the new package of Tensorflow Recommenders.


ToR[e]cSys is a PyTorch Framework to implement recommendation system algorithms, including but not limited to click-through-rate (CTR) prediction, learning-to-ranking (LTR), and Matrix/Tensor Embedding. The project objective is to develop a ecosystem to experiment, share, reproduce, and deploy in real world in a smooth and easy way (Hope it can be done).

Installation

TBU

Documentation

The complete documentation for ToR[e]cSys is available via ReadTheDocs website.
Thank you for ReadTheDocs! You are the best!

Implemented Models

1. Subsampling

Model Name Research Paper Year
Word2Vec Omer Levy et al, 2015. Improving Distributional Similarity with Lessons Learned from Word Embeddings 2015

2. Negative Sampling

Model Name Research Paper Year
TBU

3. Click through Rate (CTR) Model

Model Name Research Paper Year
Logistic Regression / /
Factorization Machine Steffen Rendle, 2010. Factorization Machine 2010
Factorization Machine Support Neural Network Weinan Zhang et al, 2016. Deep Learning over Multi-field Categorical Data: A Case Study on User Response Prediction 2016
Field-Aware Factorization Machine Yuchin Juan et al, 2016. Field-aware Factorization Machines for CTR Prediction 2016
Product Neural Network Yanru QU et al, 2016. Product-based Neural Networks for User Response Prediction 2016
Attentional Factorization Machine Jun Xiao et al, 2017. Attentional Factorization Machines: Learning the Weight of Feature Interactions via Attention Networks 2017
Deep and Cross Network Ruoxi Wang et al, 2017. Deep & Cross Network for Ad Click Predictions 2017
Deep Factorization Machine Huifeng Guo et al, 2017. DeepFM: A Factorization-Machine based Neural Network for CTR Prediction 2017
Neural Collaborative Filtering Xiangnan He et al, 2017. Neural Collaborative Filtering 2017
Neural Factorization Machine Xiangnan He et al, 2017. Neural Factorization Machines for Sparse Predictive Analytics 2017
eXtreme Deep Factorization Machine Jianxun Lian et al, 2018. xDeepFM: Combining Explicit and Implicit Feature Interactions for Recommender Systems 2018
Deep Field-Aware Factorization Machine Junlin Zhang et al, 2019. FAT-DeepFFM: Field Attentive Deep Field-aware Factorization Machine 2019
Deep Matching Correlation Prediction Wentao Ouyang et al, 2019. Representation Learning-Assisted Click-Through Rate Prediction 2019
Deep Session Interest Network Yufei Feng et al, 2019. Deep Session Interest Network for Click-Through Rate Prediction 2019
Elaborated Entire Space Supervised Multi Task Model Hong Wen et al, 2019. Conversion Rate Prediction via Post-Click Behaviour Modeling 2019
Entire Space Multi Task Model Xiao Ma et al, 2019. Entire Space Multi-Task Model: An Effective Approach for Estimating Post-Click Conversion Rate 2019
Field Attentive Deep Field Aware Factorization Machine Junlin Zhang et al, 2019. FAT-DeepFFM: Field Attentive Deep Field-aware Factorization Machine 2019
Position-bias aware learning framework Huifeng Guo et al, 2019. PAL: a position-bias aware learning framework for CTR prediction in live recommender systems 2019

4. Embedding Model

Model Name Research Paper Year
Matrix Factorization / /
Starspace Ledell Wu et al, 2017 StarSpace: Embed All The Things! 2017

5. Learning-to-Rank (LTR) Model

Model Name Research Paper Year
Personalized Re-ranking Model Changhua Pei et al, 2019. Personalized Re-ranking for Recommendation 2019

Getting Started

There are several ways using ToR[e]cSys to develop a Recommendation System. Before talking about them, we first need to discuss about components of ToR[e]cSys.

A model in ToR[e]cSys is constructed by two parts mainly: inputs and model, and they will be wrapped into a sequential module (torecsys.models.sequential) to be trained by Trainer (torecsys.trainer.Trainer). \

For inputs module (torecsys.inputs), it will handle most kinds of inputs in recommendation system, like categorical features, images, etc, with several kinds of methods, including token embedding, pre-trained image models, etc.

For models module (torecsys.models), it will implement some famous models in recommendation system, like Factorization Machine family. I hope I can make the library rich. To construct a model in the module, in addition to the modules implemented in PyTorch, I will also implement some layers in torecsys.layers which are called by models usually.

After the explanation of ToR[e]cSys, let's move on to the Getting Started. We can use ToR[e]cSys in the following ways:

  1. Run by command-line (In development)

    
    

torecsys build --inputs_config='{}'
--model_config='{"method":"FM", "embed_size": 8, "num_fields": 2}'
--regularizer_config='{"weight_decay": 0.1}'
--criterion_config='{"method": "MSELoss"}'
--optimizer_config='{"method": "SGD", "lr": "0.01"}'
... ```

  1. Run by class method

    
    

import torecsys as trs

build trainer by class method

trainer = trs.trainer.Trainer()
.bind_objective("CTR")
.set_inputs()
.set_model(method="FM", embed_size=8, num_fields=2)
.set_sequential()
.set_regularizer(weight_decay=0.1)
.build_criterion(method="MSELoss")
.build_optimizer(method="SGD", lr="0.01")
.build_loader(name="train", ...)
.build_loader(name="eval", ...)
.set_target_fields("labels")
.set_max_num_epochs(10)
.use_cuda()

start to fit the model

trainer.fit() ```

  1. Run like PyTorch Module

    
    

import torch import torch.nn as nn import torecsys as trs

some codes here

inputs = trs.inputs.InputsWrapper(schema=schema) model = trs.models.FactorizationMachineModel(embed_size=8, num_fields=2)

for i in range(epochs): optimizer.zero_grad() outputs = model(**inputs(batches)) loss = criterion(outputs, labels) loss.backward() optimizer.step() ```

(In development) You can anyone you like to train a Recommender System and serve it in the following ways:

  1. Run by command-line

    > torecsys serve --load_from='{}'
  2. Run by class method

    
    

import torecsys as trs

serving = trs.serving.Model()
.load_from(filepath=filepath) .run() ```

  1. Serve it yourself

    
    

from flask import Flask, request import torecsys as trs

model = trs.serving.Model()
.load_from(filepath=filepath)

@app.route("/predict") def predict(): args = request.json inference = model.predict(args) return inference, 200

if name == "main": app.run() ```

For further details, please refer to the example in repository or read the documentation. Hope you enjoy~

Examples

TBU

Sample Codes

TBU

Sample of Experiments

TBU

Authors

License

ToR[e]cSys is MIT-style licensed, as found in the LICENSE file.

Code for my ORSUM, ACM RecSys 2020, HeroGRAPH: A Heterogeneous Graph Framework for Multi-Target Cross-Domain Recommendation

HeroGRAPH Code for my ORSUM @ RecSys 2020, HeroGRAPH: A Heterogeneous Graph Framework for Multi-Target Cross-Domain Recommendation Paper, workshop pro

Qiang Cui 9 Sep 14, 2022
Implementation of a hadoop based movie recommendation system

Implementation-of-a-hadoop-based-movie-recommendation-system 通过编写代码,设计一个基于Hadoop的电影推荐系统,通过此推荐系统的编写,掌握在Hadoop平台上的文件操作,数据处理的技能。windows 10 hadoop 2.8.3 p

汝聪(Ricardo) 5 Oct 02, 2022
A framework for large scale recommendation algorithms.

A framework for large scale recommendation algorithms.

Alibaba Group - PAI 880 Jan 03, 2023
Mutual Fund Recommender System. Tailor for fund transactions.

Explainable Mutual Fund Recommendation Data Please see 'DATA_DESCRIPTION.md' for mode detail. Recommender System Methods Baseline Collabarative Fiilte

JHJu 2 May 19, 2022
A Library for Field-aware Factorization Machines

Table of Contents ================= - What is LIBFFM - Overfitting and Early Stopping - Installation - Data Format - Command Line Usage - Examples -

1.6k Dec 05, 2022
Code for KHGT model, AAAI2021

KHGT Code for KHGT accepted by AAAI2021 Please unzip the data files in Datasets/ first. To run KHGT on Yelp data, use python labcode_yelp.py For Movi

32 Nov 29, 2022
Cross-Domain Recommendation via Preference Propagation GraphNet.

PPGN Codes for CIKM 2019 paper Cross-Domain Recommendation via Preference Propagation GraphNet. Citation Please cite our paper if you find this code u

Information Retrieval Group, Wuhan University, China 20 Dec 15, 2022
It is a movie recommender web application which is developed using the Python.

Movie Recommendation 🍿 System Watch Tutorial for this project Source IMDB Movie 5000 Dataset Inspired from this original repository. Features Simple

Kushal Bhavsar 10 Dec 26, 2022
A tensorflow implementation of the RecoGCN model in a CIKM'19 paper, titled with "Relation-Aware Graph Convolutional Networks for Agent-Initiated Social E-Commerce Recommendation".

This repo contains a tensorflow implementation of RecoGCN and the experiment dataset Running the RecoGCN model python train.py Example training outp

xfl15 30 Nov 25, 2022
Respiratory Health Recommendation System

Respiratory-Health-Recommendation-System Respiratory Health Recommendation System based on Air Quality Index Forecasts This project aims to provide pr

Abhishek Gawabde 1 Jan 29, 2022
Bert4rec for news Recommendation

News-Recommendation-system-using-Bert4Rec-model Bert4rec for news Recommendation

saran pandian 2 Feb 04, 2022
基于个性化推荐的音乐播放系统

MusicPlayer 基于个性化推荐的音乐播放系统 Hi, 这是我在大四的时候做的毕设,现如今将该项目开源。 本项目是基于Python的tkinter和pygame所著。 该项目总体来说,代码比较烂(因为当时水平很菜)。 运行的话安装几个基本库就能跑,只不过里面的数据还没有上传至Github。 先

Cedric Niu 6 Nov 19, 2022
E-Commerce recommender demo with real-time data and a graph database

🔍 E-Commerce recommender demo 🔍 This is a simple stream setup that uses Memgraph to ingest real-time data from a simulated online store. Data is str

g-despot 3 Feb 23, 2022
Real time recommendation playground

concierge A continuous learning collaborative filter1 deployed with a light web server2. Distributed updates are live (real time pubsub + delta traini

Mark Essel 16 Nov 07, 2022
RetaGNN: Relational Temporal Attentive Graph Neural Networks for Holistic Sequential Recommendation

RetaGNN: Relational Temporal Attentive Graph Neural Networks for Holistic Sequential Recommendation Pytorch based implemention of Relational Temporal

28 Dec 28, 2022
Recommender System Papers

Included Conferences: SIGIR 2020, SIGKDD 2020, RecSys 2020, CIKM 2020, AAAI 2021, WSDM 2021, WWW 2021

RUCAIBox 704 Jan 06, 2023
This library intends to be a reference for recommendation engines in Python

Crab - A Python Library for Recommendation Engines

Marcel Caraciolo 85 Oct 04, 2021
Jointly Learning Explainable Rules for Recommendation with Knowledge Graph

Jointly Learning Explainable Rules for Recommendation with Knowledge Graph

57 Nov 03, 2022
Codes for CIKM'21 paper 'Self-Supervised Graph Co-Training for Session-based Recommendation'.

COTREC Codes for CIKM'21 paper 'Self-Supervised Graph Co-Training for Session-based Recommendation'. Requirements: Python 3.7, Pytorch 1.6.0 Best Hype

Xin Xia 43 Jan 04, 2023
Recommendation Systems for IBM Watson Studio platform

Recommendation-Systems-for-IBM-Watson-Studio-platform Project Overview In this project, I analyze the interactions that users have with articles on th

Milad Sadat-Mohammadi 1 Jan 21, 2022