Fully Adaptive Bayesian Algorithm for Data Analysis (FABADA) is a new approach of noise reduction methods. In this repository is shown the package developed for this new method based on \citepaper.

Overview

Contributors Forks Stargazers Issues GNU License LinkedIn

Fully Adaptive Bayesian Algorithm for Data Analysis

FABADA

FABADA is a novel non-parametric noise reduction technique which arise from the point of view of Bayesian inference that iteratively evaluates possible smoothed models of the data, obtaining an estimation of the underlying signal that is statistically compatible with the noisy measurements. Iterations stop based on the evidence $E$ and the $\chi^2$ statistic of the last smooth model, and we compute the expected value of the signal as a weighted average of the smooth models. You can find the entire paper describing the new method in (link will be available soon).
Explore the docs »

View Demo · Report Bug · Request Feature

Table of Contents
  1. About The Method
  2. Getting Started
  3. Usage
  4. Results
  5. Contributing
  6. License
  7. Contact
  8. Cite

About The Method

This automatic method is focused in astronomical data, such as images (2D) or spectra (1D). Although, this doesn't mean it can be treat like a general noise reduction algorithm and can be use in any kind of two and one-dimensional data reproducing reliable results. The only requisite of the input data is an estimation of its variance.

(back to top)

Getting Started

We try to make the usage of FABADA as simple as possible. For that purpose, we have create a PyPI and Conda package to install FABADA in its latest version.

Prerequisites

The first requirement is to have a version of Python greater than 3.5. Although PyPI install the prerequisites itself, FABADA has two dependecies.

Installation

To install fabada we can, use the Python Package Index (PyPI) or Conda.

Using pip

  pip install fabada

we are currently working on uploading the package to the Conda system.

(back to top)

Usage

Along with the package two examples are given.

  • fabada_demo_image.py

In here we show how to use fabada for an astronomical grey image (two dimensional) First of all we have to import our library previously install and some dependecies

    from fabada import fabada
    import numpy as np
    from PIL import Image

Then we read the bubble image borrowed from the Hubble Space Telescope gallery. In our case we use the Pillow library for that. We also add some random Gaussian white noise using numpy.random.

    # IMPORTING IMAGE
    y = np.array(Image.open("bubble.png").convert('L'))

    # ADDING RANDOM GAUSSIAN NOISE
    np.random.seed(12431)
    sig      = 15             # Standard deviation of noise
    noise    = np.random.normal(0, sig ,y.shape)
    z        = y + noise
    variance = sig**2

Once the noisy image is generated we can apply fabada to produce an estimation of the underlying image, which we only have to call fabada and give it the variance of the noisy image

    y_recover = fabada(z,variance)

And its done 😉

As easy as one line of code.

The results obtained running this example would be:

Image Results

The left, middle and right panel corresponds to the true signal, the noisy meassurents and the estimation of fabada respectively. There is also shown the Peak Signal to Noise Ratio (PSNR) in dB and the Structural Similarity Index Measure (SSIM) at the bottom of the middle and right panel (PSNR/SSIM).

  • fabada_demo_spectra.py

In here we show how to use fabada for an astronomical spectrum (one dimensional), basically is the same as the example above since fabada is the same for one and two-dimensional data. First of all, we have to import our library previously install and some dependecies

    from fabada import fabada
    import pandas as pd
    import numpy as np

Then we read the interacting galaxy pair Arp 256 spectra, taken from the ASTROLIB PYSYNPHOT package which is store in arp256.csv. Again we add some random Gaussian white noise

    # IMPORTING SPECTRUM
    y = np.array(pd.read_csv('arp256.csv').flux)
    y = (y/y.max())*255  # Normalize to 255

    # ADDING RANDOM GAUSSIAN NOISE
    np.random.seed(12431)
    sig      = 10             # Standard deviation of noise
    noise    = np.random.normal(0, sig ,y.shape)
    z        = y + noise
    variance = sig**2

Once the noisy image is generated we can, again, apply fabada to produce an estimation of the underlying spectrum, which we only have to call fabada and give it the variance of the noisy image

    y_recover = fabada(z,variance)

And done again 😉

Which is exactly the same as for two dimensional data.

The results obtained running this example would be:

Spectra Results

The red, grey and black line represents the true signal, the noisy meassurents and the estimation of fabada respectively. There is also shown the Peak Signal to Noise Ratio (PSNR) in dB and the Structural Similarity Index Measure (SSIM) in the legend of the figure (PSNR/SSIM).

(back to top)

Results

All the results of the paper of this algorithm can be found in the folder results along with a jupyter notebook that allows to explore all of them through an interactive interface. You can run the jupyter notebook through Google Colab in this link --> Explore the results.

(back to top)

Contributing

Contributions are what make the open source community such an amazing place to learn, inspire, and create. Any contributions you make are greatly appreciated.

If you have a suggestion that would make this better, please fork the repo and create a pull request. You can also simply open an issue with the tag "enhancement". Don't forget to give the project a star! Thanks again!

  1. Fork the Project
  2. Create your Feature Branch (git checkout -b feature/AmazingFeature)
  3. Commit your Changes (git commit -m 'Add some AmazingFeature')
  4. Push to the Branch (git push origin feature/AmazingFeature)
  5. Open a Pull Request

(back to top)

License

Distributed under the GNU General Public License. See LICENSE.txt for more information.

(back to top)

Contact

Pablo M Sánchez Alarcón - [email protected]

Yago Ascasibar Sequeiros - [email protected]

Project Link: https://github.com/PabloMSanAla/fabada

(back to top)

Cite

Thank you for using FABADA.

Citations and acknowledgement are vital for the continued work on this kind of algorithms.

Please cite the following record if you used FABADA in any of your publications.

@ARTICLE{2022arXiv220105145S,
author = {{Sanchez-Alarcon}, Pablo M and {Ascasibar Sequeiros}, Yago},
title = "{Fully Adaptive Bayesian Algorithm for Data Analysis, FABADA}",
journal = {arXiv e-prints},
keywords = {Astrophysics - Instrumentation and Methods for Astrophysics, Astrophysics - Astrophysics of Galaxies, Astrophysics - Solar and Stellar Astrophysics, Computer Science - Computer Vision and Pattern Recognition, Physics - Data Analysis, Statistics and Probability},
year = 2022,
month = jan,
eid = {arXiv:2201.05145},
pages = {arXiv:2201.05145},
archivePrefix = {arXiv},
eprint = {2201.05145},
primaryClass = {astro-ph.IM},
adsurl = {https://ui.adsabs.harvard.edu/abs/2022arXiv220105145S}
}

Sanchez-Alarcon, P. M. and Ascasibar Sequeiros, Y., “Fully Adaptive Bayesian Algorithm for Data Analysis, FABADA”, arXiv e-prints, 2022.

https://arxiv.org/abs/2201.05145

(back to top)

Readme file taken from Best README Template.

You might also like...
pyhsmm - library for approximate unsupervised inference in Bayesian Hidden Markov Models (HMMs) and explicit-duration Hidden semi-Markov Models (HSMMs), focusing on the Bayesian Nonparametric extensions, the HDP-HMM and HDP-HSMM, mostly with weak-limit approximations.
Bayesian-Torch is a library of neural network layers and utilities extending the core of PyTorch to enable the user to perform stochastic variational inference in Bayesian deep neural networks

Bayesian-Torch is a library of neural network layers and utilities extending the core of PyTorch to enable the user to perform stochastic variational inference in Bayesian deep neural networks. Bayesian-Torch is designed to be flexible and seamless in extending a deterministic deep neural network architecture to corresponding Bayesian form by simply replacing the deterministic layers with Bayesian layers.

Hierarchical-Bayesian-Defense - Towards Adversarial Robustness of Bayesian Neural Network through Hierarchical Variational Inference (Openreview) How the Deep Q-learning method works and discuss the new ideas that makes the algorithm work
How the Deep Q-learning method works and discuss the new ideas that makes the algorithm work

Deep Q-Learning Recommend papers The first step is to read and understand the method that you will implement. It was first introduced in a 2013 paper

PassAPI is a password generator in hash format and fully developed in Python, with the aim of teaching how to handle and build
PassAPI is a password generator in hash format and fully developed in Python, with the aim of teaching how to handle and build

simple, elegant and safe Introduction PassAPI is a password generator in hash format and fully developed in Python, with the aim of teaching how to ha

Implementation of temporal pooling methods studied in [ICIP'20] A Comparative Evaluation Of Temporal Pooling Methods For Blind Video Quality Assessment

Implementation of temporal pooling methods studied in [ICIP'20] A Comparative Evaluation Of Temporal Pooling Methods For Blind Video Quality Assessment

A variational Bayesian method for similarity learning in non-rigid image registration (CVPR 2022)
A variational Bayesian method for similarity learning in non-rigid image registration (CVPR 2022)

A variational Bayesian method for similarity learning in non-rigid image registration We provide the source code and the trained models used in the re

We evaluate our method on different datasets (including ShapeNet, CUB-200-2011, and Pascal3D+) and achieve state-of-the-art results, outperforming all the other supervised and unsupervised methods and 3D representations, all in terms of performance, accuracy, and training time.
Comments
  • chi2pdf

    chi2pdf

    https://github.com/PabloMSanAla/fabada/blob/44a0ae025d21a11235f6591f8fcacbf7c0cec1ec/fabada/init.py#L129

    The chi2pdf estimation is dependent on df. df, in the example demos, is set to data.size.

    In the case of fabada_demo_spectrum, data.size is 1430 samples.

    per wolfram alpha, the gamma function value of 715 is 1x10^1729, which is well out of the calculation range of any desktop computer.

    chi2_data = np.sum <-- a float chi2_pdf = stats.chi2.pdf(chi2_data, df=data.size)

    https://lost-contact.mit.edu/afs/inf.ed.ac.uk/group/teaching/matlab-help/R2014a/stats/chi2pdf.html

    chi2_pdf = (chi2data** (N - 2) / 2) * numpy.exp(-chi2sum / 2)
    / ((2 ** (N / 2)) * math.gamma(N / 2))

    As a result, this function is going to fail without any question, and numpy /python will happily ignore the NaN value which is always returned. this then turns chi2_pdf_derivative chi2_pdf_previous chi2_pdf_snd_derivative chi2_pdf_derivative_previous into NaN values as well.

    opened by falseywinchnet 0
  • data variance fixing unreachable

    data variance fixing unreachable

    https://github.com/PabloMSanAla/fabada/blob/master/fabada/init.py#L83 this line of code is unreachable: since all the nan's are already set to 0 previously

    opened by falseywinchnet 0
  • python equivalance

    python equivalance

    https://github.com/PabloMSanAla/fabada/blob/44a0ae025d21a11235f6591f8fcacbf7c0cec1ec/fabada/init.py#L115 This sets a reference, and afterwards, any update to the array being referenced also modifies the array referencing it.

    opened by falseywinchnet 2
Releases(v0.2)
Disease Informed Neural Networks (DINNs) — neural networks capable of learning how diseases spread, forecasting their progression, and finding their unique parameters (e.g. death rate).

DINN We introduce Disease Informed Neural Networks (DINNs) — neural networks capable of learning how diseases spread, forecasting their progression, a

19 Dec 10, 2022
Torchyolo - Yolov3 ve Yolov4 modellerin Pytorch uygulamasıdır

TORCHYOLO : Yolo Modellerin Pytorch Uygulaması Yapılacaklar: Yolov3 model.py ve

Kadir Nar 3 Aug 22, 2022
Non-Imaging Transient Reconstruction And TEmporal Search (NITRATES)

Non-Imaging Transient Reconstruction And TEmporal Search (NITRATES) This repo contains the full NITRATES pipeline for maximum likelihood-driven discov

13 Nov 08, 2022
Repo for paper "Dynamic Placement of Rapidly Deployable Mobile Sensor Robots Using Machine Learning and Expected Value of Information"

Repo for paper "Dynamic Placement of Rapidly Deployable Mobile Sensor Robots Using Machine Learning and Expected Value of Information" Notes I probabl

Berkeley Expert System Technologies Lab 0 Jul 01, 2021
Translation-equivariant Image Quantizer for Bi-directional Image-Text Generation

Translation-equivariant Image Quantizer for Bi-directional Image-Text Generation Woncheol Shin1, Gyubok Lee1, Jiyoung Lee1, Joonseok Lee2,3, Edward Ch

Woncheol Shin 7 Sep 26, 2022
MADE (Masked Autoencoder Density Estimation) implementation in PyTorch

pytorch-made This code is an implementation of "Masked AutoEncoder for Density Estimation" by Germain et al., 2015. The core idea is that you can turn

Andrej 498 Dec 30, 2022
Tools for investing in Python

InvestOps Original repository on GitHub Original author is Magnus Erik Hvass Pedersen Introduction This is a Python package with simple and effective

24 Nov 26, 2022
Official PyTorch code for Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling (HCFlow, ICCV2021)

Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling (HCFlow, ICCV2021) This repository is the official P

Jingyun Liang 159 Dec 30, 2022
PyTorch Implementation of Meta-StyleSpeech : Multi-Speaker Adaptive Text-to-Speech Generation

StyleSpeech - PyTorch Implementation PyTorch Implementation of Meta-StyleSpeech : Multi-Speaker Adaptive Text-to-Speech Generation. Status (2021.06.13

Keon Lee 140 Dec 21, 2022
Open-sourcing the Slates Dataset for recommender systems research

FINN.no Recommender Systems Slate Dataset This repository accompany the paper "Dynamic Slate Recommendation with Gated Recurrent Units and Thompson Sa

FINN.no 48 Nov 28, 2022
Pytorch implementation of Learning with Opponent-Learning Awareness

Pytorch implementation of Learning with Opponent-Learning Awareness using DiCE

Alexis David Jacq 82 Sep 15, 2022
This is an official implementation for "Exploiting Temporal Contexts with Strided Transformer for 3D Human Pose Estimation".

Exploiting Temporal Contexts with Strided Transformer for 3D Human Pose Estimation This repo is the official implementation of Exploiting Temporal Con

Vegetabird 241 Jan 07, 2023
Pcos-prediction - Predicts the likelihood of Polycystic Ovary Syndrome based on patient attributes and symptoms

PCOS Prediction 🥼 Predicts the likelihood of Polycystic Ovary Syndrome based on

Samantha Van Seters 1 Jan 10, 2022
A new GCN model for Point Cloud Analyse

Pytorch Implementation of PointNet and PointNet++ This repo is implementation for VA-GCN in pytorch. Classification (ModelNet10/40) Data Preparation D

12 Feb 02, 2022
Basics of 2D and 3D Human Pose Estimation.

Human Pose Estimation 101 If you want a slightly more rigorous tutorial and understand the basics of Human Pose Estimation and how the field has evolv

Sudharshan Chandra Babu 293 Dec 14, 2022
The implementation of the paper "HIST: A Graph-based Framework for Stock Trend Forecasting via Mining Concept-Oriented Shared Information".

The HIST framework for stock trend forecasting The implementation of the paper "HIST: A Graph-based Framework for Stock Trend Forecasting via Mining C

Wentao Xu 110 Dec 27, 2022
GPU-Accelerated Deep Learning Library in Python

Hebel GPU-Accelerated Deep Learning Library in Python Hebel is a library for deep learning with neural networks in Python using GPU acceleration with

Hannes Bretschneider 1.2k Dec 21, 2022
SysWhispers Shellcode Loader

Shhhloader Shhhloader is a SysWhispers Shellcode Loader that is currently a Work in Progress. It takes raw shellcode as input and compiles a C++ stub

icyguider 630 Jan 03, 2023
Source for the paper "Universal Activation Function for machine learning"

Universal Activation Function Tensorflow and Pytorch source code for the paper Yuen, Brosnan, Minh Tu Hoang, Xiaodai Dong, and Tao Lu. "Universal acti

4 Dec 03, 2022
SeqTR: A Simple yet Universal Network for Visual Grounding

SeqTR This is the official implementation of SeqTR: A Simple yet Universal Network for Visual Grounding, which simplifies and unifies the modelling fo

seanZhuh 76 Dec 24, 2022