pandas, scikit-learn, xgboost and seaborn integration

Overview

pandas-ml

Latest Docs https://travis-ci.org/pandas-ml/pandas-ml.svg?branch=master

Overview

pandas, scikit-learn and xgboost integration.

Installation

$ pip install pandas_ml

Documentation

http://pandas-ml.readthedocs.org/en/stable/

Example

>>> import pandas_ml as pdml
>>> import sklearn.datasets as datasets

# create ModelFrame instance from sklearn.datasets
>>> df = pdml.ModelFrame(datasets.load_digits())
>>> type(df)
<class 'pandas_ml.core.frame.ModelFrame'>

# binarize data (features), not touching target
>>> df.data = df.data.preprocessing.binarize()
>>> df.head()
   .target  0  1  2  3  4  5  6  7  8 ...  54  55  56  57  58  59  60  61  62  63
0        0  0  0  1  1  1  1  0  0  0 ...   0   0   0   0   1   1   1   0   0   0
1        1  0  0  0  1  1  1  0  0  0 ...   0   0   0   0   0   1   1   1   0   0
2        2  0  0  0  1  1  1  0  0  0 ...   1   0   0   0   0   1   1   1   1   0
3        3  0  0  1  1  1  1  0  0  0 ...   1   0   0   0   1   1   1   1   0   0
4        4  0  0  0  1  1  0  0  0  0 ...   0   0   0   0   0   1   1   1   0   0
[5 rows x 65 columns]

# split to training and test data
>>> train_df, test_df = df.model_selection.train_test_split()

# create estimator (accessor is mapped to sklearn namespace)
>>> estimator = df.svm.LinearSVC()

# fit to training data
>>> train_df.fit(estimator)

# predict test data
>>> test_df.predict(estimator)
0     4
1     2
2     7
...
448    5
449    8
Length: 450, dtype: int64

# Evaluate the result
>>> test_df.metrics.confusion_matrix()
Predicted   0   1   2   3   4   5   6   7   8   9
Target
0          52   0   0   0   0   0   0   0   0   0
1           0  37   1   0   0   1   0   0   3   3
2           0   2  48   1   0   0   0   1   1   0
3           1   1   0  44   0   1   0   0   3   1
4           1   0   0   0  43   0   1   0   0   0
5           0   1   0   0   0  39   0   0   0   0
6           0   1   0   0   1   0  35   0   0   0
7           0   0   0   0   2   0   0  42   1   0
8           0   2   1   0   1   0   0   0  33   1
9           0   2   1   2   0   0   0   0   1  38

Supported Packages

  • scikit-learn
  • patsy
  • xgboost
Comments
  • Fixed imports of deprecated modules which were removed in pandas 0.24.0

    Fixed imports of deprecated modules which were removed in pandas 0.24.0

    Certain functions were deprecated in a previous version of pandas and moved to a different module (see #117). This PR fixes the imports of those functions.

    opened by kristofve 8
  • REL: v0.4.0

    REL: v0.4.0

    • [x] Compat/test for sklearn 0.18.0 (#81)
      • [x] initial fix (#81)
      • [x] wrapper for cross validation classes (re-enable skipped tests) (#85)
      • [x] tests for multioutput (#86)
      • [x] Update doc
    • [x] Compat/test for pandas 0.19.0 (#83)
    • [x] Update release note (#88)
    opened by sinhrks 4
  • Importation error

    Importation error

    I tried to import pandas_ml but it gave the error :

    AttributeError: type object 'NDFrame' has no attribute 'groupby'

    I'm running python3.8.1 and I installed pandas_ml via pip (version 20.0.2)

    I dig in the code, error is l.80 of file series.py

    @Appender(pd.core.generic.NDFrame.groupby.__doc__)

    Here pandas is imported at the top of the file with a classic import pandas as pd

    I guess there is a problem with the versions...

    Thanks in advance for any help

    opened by ierezell 2
  • Confusion Matrix no accessible

    Confusion Matrix no accessible

    Hi,

    I've been using confusion_matrix since it was an independent package. I've installed pandas_ml to continue using the package, but it seems that the setup.py script does not install the package.

    Could it be an issue with the find_packages function?

    opened by mmartinortiz 2
  • Seaborn Scatterplot matrix / pairplot integration

    Seaborn Scatterplot matrix / pairplot integration

    import seaborn as sns
    sns.set()
    
    df = sns.load_dataset("iris")
    sns.pairplot(df, hue="species")
    

    displays

    iris_scatter_matrix

    but pairplot doesn't work the same way with ModelFrame

    import pandas as pd
    pd.set_option('max_rows', 10)
    import sklearn.datasets as datasets
    import pandas_ml as pdml  # https://github.com/pandas-ml/pandas-ml
    import seaborn as sns
    import matplotlib.pyplot as plt
    df = pdml.ModelFrame(datasets.load_iris())
    sns.pairplot(df, hue=".target")
    

    iris_modelframe

    There is some useless subplots

    opened by scls19fr 2
  • Error while running train.py from speech commands in tensorflow examples.

    Error while running train.py from speech commands in tensorflow examples.

    Have the following error: File "train.py", line 27, in <module> from callbacks import ConfusionMatrixCallback File "/home/tesseract/ayush_workspace/NLP/WakeWord/tensorflow_trainer/ml/callbacks.py", line 21, in <module> from pandas_ml import ConfusionMatrix File "/home/tesseract/anaconda3/envs/ciao/lib/python3.6/site-packages/pandas_ml/__init__.py", line 3, in <module> from pandas_ml.core import ModelFrame, ModelSeries # noqa File "/home/tesseract/anaconda3/envs/ciao/lib/python3.6/site-packages/pandas_ml/core/__init__.py", line 3, in <module> from pandas_ml.core.frame import ModelFrame # noqa File "/home/tesseract/anaconda3/envs/ciao/lib/python3.6/site-packages/pandas_ml/core/frame.py", line 18, in <module> from pandas_ml.core.series import ModelSeries File "/home/tesseract/anaconda3/envs/ciao/lib/python3.6/site-packages/pandas_ml/core/series.py", line 11, in <module> class ModelSeries(ModelTransformer, pd.Series): File "/home/tesseract/anaconda3/envs/ciao/lib/python3.6/site-packages/pandas_ml/core/series.py", line 80, in ModelSeries @Appender(pd.core.generic.NDFrame.groupby.__doc__) AttributeError: type object 'NDFrame' has no attribute 'groupby' Happening with both version 5 and 6.1

    opened by ayush7 1
  • error for example https://pandas-ml.readthedocs.io/en/latest/xgboost.html

    error for example https://pandas-ml.readthedocs.io/en/latest/xgboost.html

    code from example https://pandas-ml.readthedocs.io/en/latest/xgboost.html '''import pandas_ml as pdml import sklearn.datasets as datasets df = pdml.ModelFrame(datasets.load_digits()) train_df, test_df = df.cross_validation.train_test_split() estimator = df.xgboost.XGBClassifier() train_df.fit(estimator) predicted = test_df.predict(estimator) q=1 test_df.metrics.confusion_matrix() train_df.xgboost.plot_importance()

    tuned_parameters = [{'max_depth': [3, 4]}] cv = df.grid_search.GridSearchCV(df.xgb.XGBClassifier(), tuned_parameters, cv=5)

    df.fit(cv) df.grid_search.describe(cv) q=1

    '''

    gives error ''' File "E:\Pandas\my_code\S_pandas_ml_feb27.py", line 10, in train_df.xgboost.plot_importance() File "C:\Users\sndr\Anaconda3\Lib\site-packages\pandas_ml\xgboost\base.py", line 61, in plot_importance return xgb.plot_importance(self._df.estimator.booster(),

    builtins.TypeError: 'str' object is not callable ''' I use Windows and 3.6.4 |Anaconda, Inc.| (default, Jan 16 2018, 10:22:32) [MSC v.1900 64 bit (AMD64)] Python Type "help", "copyright", "credits" or "license" for more information.

    opened by Sandy4321 1
  • pandas 0.24.0 has deprecated pandas.util.decorators

    pandas 0.24.0 has deprecated pandas.util.decorators

    See https://pandas.pydata.org/pandas-docs/stable/whatsnew/v0.24.0.html#deprecations

    This causes the import statement in https://github.com/pandas-ml/pandas-ml/blob/master/pandas_ml/core/frame.py to break.

    Looks like just need to change it to 'from pandas.utils'

    opened by usul83 1
  • 'mean_absoloute_error

    'mean_absoloute_error

    from sklearn import metrics print('MAE:',metrics.mean_absoloute_error(y_test,y_pred)) module 'sklearn.metrics' has no attribute 'mean_absoloute_error This error is occurred..any solution

    opened by vikramk1507 0
  • AttributeError: type object 'NDFrame' has no attribute 'groupby'

    AttributeError: type object 'NDFrame' has no attribute 'groupby'

    AttributeError: type object 'NDFrame' has no attribute 'groupby'

    from pandas_ml import ConfusionMatrix cm = ConfusionMatrix(actu, pred) cm.print_stats()


    AttributeError Traceback (most recent call last) in ----> 1 from pandas_ml import confusion_matrix 2 3 cm = ConfusionMatrix(actu, pred) 4 cm.print_stats()

    /usr/local/lib/python3.8/site-packages/pandas_ml/init.py in 1 #!/usr/bin/env python 2 ----> 3 from pandas_ml.core import ModelFrame, ModelSeries # noqa 4 from pandas_ml.tools import info # noqa 5 from pandas_ml.version import version as version # noqa

    /usr/local/lib/python3.8/site-packages/pandas_ml/core/init.py in 1 #!/usr/bin/env python 2 ----> 3 from pandas_ml.core.frame import ModelFrame # noqa 4 from pandas_ml.core.series import ModelSeries # noqa

    /usr/local/lib/python3.8/site-packages/pandas_ml/core/frame.py in 16 from pandas_ml.core.accessor import _AccessorMethods 17 from pandas_ml.core.generic import ModelPredictor, _shared_docs ---> 18 from pandas_ml.core.series import ModelSeries 19 20

    /usr/local/lib/python3.8/site-packages/pandas_ml/core/series.py in 9 10 ---> 11 class ModelSeries(ModelTransformer, pd.Series): 12 """ 13 Wrapper for pandas.Series to support sklearn.preprocessing

    /usr/local/lib/python3.8/site-packages/pandas_ml/core/series.py in ModelSeries() 78 return df 79 ---> 80 @Appender(pd.core.generic.NDFrame.groupby.doc) 81 def groupby(self, by=None, axis=0, level=None, as_index=True, sort=True, 82 group_keys=True, squeeze=False):

    AttributeError: type object 'NDFrame' has no attribute 'groupby'

    opened by gfranco008 5
  • AttributeError: module 'sklearn.metrics' has no attribute 'jaccard_similarity_score'

    AttributeError: module 'sklearn.metrics' has no attribute 'jaccard_similarity_score'

    I am using scikit-learn version 0.23.1 and I get the following error: AttributeError: module 'sklearn.metrics' has no attribute 'jaccard_similarity_score' when calling the function ConfusionMatrix.

    opened by petraknovak 11
  • Error while running train.py from speech commands in tensorflow examples. AttributeError: type object 'NDFrame' has no attribute 'groupby'

    Error while running train.py from speech commands in tensorflow examples. AttributeError: type object 'NDFrame' has no attribute 'groupby'

    Have the following error: File "train.py", line 27, in <module> from callbacks import ConfusionMatrixCallback File "/home/tesseract/ayush_workspace/NLP/WakeWord/tensorflow_trainer/ml/callbacks.py", line 21, in <module> from pandas_ml import ConfusionMatrix File "/home/tesseract/anaconda3/envs/ciao/lib/python3.6/site-packages/pandas_ml/__init__.py", line 3, in <module> from pandas_ml.core import ModelFrame, ModelSeries # noqa File "/home/tesseract/anaconda3/envs/ciao/lib/python3.6/site-packages/pandas_ml/core/__init__.py", line 3, in <module> from pandas_ml.core.frame import ModelFrame # noqa File "/home/tesseract/anaconda3/envs/ciao/lib/python3.6/site-packages/pandas_ml/core/frame.py", line 18, in <module> from pandas_ml.core.series import ModelSeries File "/home/tesseract/anaconda3/envs/ciao/lib/python3.6/site-packages/pandas_ml/core/series.py", line 11, in <module> class ModelSeries(ModelTransformer, pd.Series): File "/home/tesseract/anaconda3/envs/ciao/lib/python3.6/site-packages/pandas_ml/core/series.py", line 80, in ModelSeries @Appender(pd.core.generic.NDFrame.groupby.__doc__) AttributeError: type object 'NDFrame' has no attribute 'groupby' Happening with both version 5 and 6.1

    opened by ayush7 3
  • Pandas 1.0.0rc0/0.6.1 module 'sklearn.preprocessing' has no attribute 'Imputer'

    Pandas 1.0.0rc0/0.6.1 module 'sklearn.preprocessing' has no attribute 'Imputer'

    SKLEARN

    sklearn.preprocessing.Imputer Warning DEPRECATED

    class sklearn.preprocessing.Imputer(*args, **kwargs)[source] Imputation transformer for completing missing values.

    Read more in the User Guide.

    
    ---------------------------------------------------------------------------
    AttributeError                            Traceback (most recent call last)
    <ipython-input-1-e0471065d85c> in <module>
          1 import pandas as pd
          2 import numpy as np
    ----> 3 import pandas_ml as pdml
          4 a1 = np.random.randint(0,2,size=(100,2))
          5 df = pd.DataFrame(a1,columns=['i1','i2'])
    
    C:\g\test\lib\pandas_ml\__init__.py in <module>
          1 #!/usr/bin/env python
          2 
    ----> 3 from pandas_ml.core import ModelFrame, ModelSeries       # noqa
          4 from pandas_ml.tools import info                         # noqa
          5 from pandas_ml.version import version as __version__     # noqa
    
    C:\g\test\lib\pandas_ml\core\__init__.py in <module>
          1 #!/usr/bin/env python
          2 
    ----> 3 from pandas_ml.core.frame import ModelFrame       # noqa
          4 from pandas_ml.core.series import ModelSeries     # noqa
    
    C:\g\test\lib\pandas_ml\core\frame.py in <module>
          8 
          9 import pandas_ml.imbaccessors as imbaccessors
    ---> 10 import pandas_ml.skaccessors as skaccessors
         11 import pandas_ml.smaccessors as smaccessors
         12 import pandas_ml.snsaccessors as snsaccessors
    
    C:\g\test\lib\pandas_ml\skaccessors\__init__.py in <module>
         17 from pandas_ml.skaccessors.neighbors import NeighborsMethods                      # noqa
         18 from pandas_ml.skaccessors.pipeline import PipelineMethods                        # noqa
    ---> 19 from pandas_ml.skaccessors.preprocessing import PreprocessingMethods              # noqa
         20 from pandas_ml.skaccessors.svm import SVMMethods                                  # noqa
    
    C:\g\test\lib\pandas_ml\skaccessors\preprocessing.py in <module>
         11     _keep_col_classes = [pp.Binarizer,
         12                          pp.FunctionTransformer,
    ---> 13                          pp.Imputer,
         14                          pp.KernelCenterer,
         15                          pp.LabelEncoder,
    
    AttributeError: module 'sklearn.preprocessing' has no attribute 'Imputer'
    
    opened by apiszcz 11
Releases(v0.6.1)
Machine Learning toolbox for Humans

Reproducible Experiment Platform (REP) REP is ipython-based environment for conducting data-driven research in a consistent and reproducible way. Main

Yandex 663 Dec 31, 2022
The Ultimate FREE Machine Learning Study Plan

The Ultimate FREE Machine Learning Study Plan

Patrick Loeber (Python Engineer) 2.5k Jan 05, 2023
monolish: MONOlithic Liner equation Solvers for Highly-parallel architecture

monolish is a linear equation solver library that monolithically fuses variable data type, matrix structures, matrix data format, vendor specific data transfer APIs, and vendor specific numerical alg

RICOS Co. Ltd. 179 Dec 21, 2022
使用数学和计算机知识投机倒把

偷鸡不成项目集锦 坦率地讲,涉及金融市场的好策略如果公开,必然导致使用的人多,最后策略变差。所以这个仓库只收集我目前失败了的案例。 加密货币组合套利 中国体育彩票预测 我赚不上钱的项目,也许可以帮助更有能力的人去赚钱。

Roy 28 Dec 29, 2022
A Powerful Serverless Analysis Toolkit That Takes Trial And Error Out of Machine Learning Projects

KXY: A Seemless API to 10x The Productivity of Machine Learning Engineers Documentation https://www.kxy.ai/reference/ Installation From PyPi: pip inst

KXY Technologies, Inc. 35 Jan 02, 2023
fastFM: A Library for Factorization Machines

Citing fastFM The library fastFM is an academic project. The time and resources spent developing fastFM are therefore justified by the number of citat

1k Dec 24, 2022
A project based example of Data pipelines, ML workflow management, API endpoints and Monitoring.

MLOps template with examples for Data pipelines, ML workflow management, API development and Monitoring.

Utsav 33 Dec 03, 2022
Microsoft Machine Learning for Apache Spark

Microsoft Machine Learning for Apache Spark MMLSpark is an ecosystem of tools aimed towards expanding the distributed computing framework Apache Spark

Microsoft Azure 3.9k Dec 30, 2022
Credit Card Fraud Detection, used the credit card fraud dataset from Kaggle

Credit Card Fraud Detection, used the credit card fraud dataset from Kaggle

Sean Zahller 1 Feb 04, 2022
ml4h is a toolkit for machine learning on clinical data of all kinds including genetics, labs, imaging, clinical notes, and more

ml4h is a toolkit for machine learning on clinical data of all kinds including genetics, labs, imaging, clinical notes, and more

Broad Institute 65 Dec 20, 2022
pure-predict: Machine learning prediction in pure Python

pure-predict speeds up and slims down machine learning prediction applications. It is a foundational tool for serverless inference or small batch prediction with popular machine learning frameworks l

Ibotta 84 Dec 29, 2022
DirectML is a high-performance, hardware-accelerated DirectX 12 library for machine learning.

DirectML is a high-performance, hardware-accelerated DirectX 12 library for machine learning. DirectML provides GPU acceleration for common machine learning tasks across a broad range of supported ha

Microsoft 1.1k Jan 04, 2023
Examples and code for the Practical Machine Learning workshop series

Practical Machine Learning Workshop Series Practical Machine Learning for Quantitative Finance Post conference workshop at the WBS Spring Conference D

CompatibL 21 Jun 25, 2022
Automated Machine Learning Pipeline with Feature Engineering and Hyper-Parameters Tuning

The mljar-supervised is an Automated Machine Learning Python package that works with tabular data. I

MLJAR 2.4k Jan 02, 2023
A scikit-learn based module for multi-label et. al. classification

scikit-multilearn scikit-multilearn is a Python module capable of performing multi-label learning tasks. It is built on-top of various scientific Pyth

802 Jan 01, 2023
hgboost - Hyperoptimized Gradient Boosting

hgboost is short for Hyperoptimized Gradient Boosting and is a python package for hyperparameter optimization for xgboost, catboost and lightboost using cross-validation, and evaluating the results o

Erdogan Taskesen 34 Jan 03, 2023
A collection of video resources for machine learning

Machine Learning Videos This is a collection of recorded talks at machine learning conferences, workshops, seminars, summer schools, and miscellaneous

Dustin Tran 1.5k Dec 29, 2022
Model Validation Toolkit is a collection of tools to assist with validating machine learning models prior to deploying them to production and monitoring them after deployment to production.

Model Validation Toolkit is a collection of tools to assist with validating machine learning models prior to deploying them to production and monitoring them after deployment to production.

FINRA 25 Dec 28, 2022
A data preprocessing package for time series data. Design for machine learning and deep learning.

A data preprocessing package for time series data. Design for machine learning and deep learning.

Allen Chiang 152 Jan 07, 2023
Predicting Keystrokes using an Audio Side-Channel Attack and Machine Learning

Predicting Keystrokes using an Audio Side-Channel Attack and Machine Learning My

3 Apr 10, 2022