Code for Mesh Convolution Using a Learned Kernel Basis

Overview

Mesh Convolution

This repository contains the implementation (in PyTorch) of the paper FULLY CONVOLUTIONAL MESH AUTOENCODER USING EFFICIENT SPATIALLY VARYING KERNELS (Project Page).

Contents

  1. Introduction
  2. Usage
  3. Citation

Introduction

Here we provide the implementation of convolution,transpose convolution, pooling, unpooling, and residual neural network layers for mesh or graph data with an unchanged topology. We demonstrate the usage by the example of training an auto-encoder for the D-FAUST dataset. If you read through this document, it won't be complicated to use our code.

Usage

1. Overview:

The files are organized by three folders: code, data and train. code contains two programs. GraphSampling is used to down and up-sample the input graph and create the connection matrices at each step which give the connection between the input graph and output graph. GraphAE will load the connection matricesto build (transpose)convolution and (un)pooling layers and train an auto-encoder. data contains the template mesh files and the processed feature data. Train stores the connection matrices generated by GraphSampling, the experiment configuration files and the training results.

2. Environment

For compiling and running the C++ project in GraphSampling, you need to install cmake, ZLIB and opencv.

For running the python code in GraphAE, I recommend to use anaconda virtual environment with python3.6, numpy, pytorch0.4.1 or higher version such as pytorch1.3, plyfile, json, configparser, tensorboardX, matplotlib, transforms3d and opencv-python.

3. Data Preparation

Step One:

Download registrations_f.hdf5 and registrations_m.hdf5 from D-FAUST to data/DFAUST/ and use code/GraphAE/graphAE_datamaker_DFAUST.py to generate numpy arrays, train.npy, eval.npy and test.npy for training, validation and testing, with dimension pc_numpoint_numchannel (pc for a model instance, point for vertex, channel for features). For the data we used in the paper, please download from: https://drive.google.com/drive/folders/1r3WiX1xtpEloZtwCFOhbydydEXajjn0M?usp=sharing

For downloading the sakura trunk dataset and asian dragon dataset, please find the links in data/asiandragon.md and data/sakuratrunk.md.

Step Two:

Pick up an arbitray mesh in the dataset as the template mesh and create:

  1. template.obj. It will be used by GraphSampling. If you want to manually assign some center vertices, set their color to be red (1.0, 0, 0) using the paint tool in MeshLab as the example template.obj in data/DFAUST.

  2. template.ply. It will be used by GraphAE for saving temporate result in ply.

We have put the example templated.obj and template.ply files in data/DFAUST.

Tips:

For any dataset, in general, it works better if scaling the data to have the bounding box between 1.01.01.0 and 2.02.02.0.

2. GraphSampling

This code will load template.obj, compute the down and up-sampling graphs and write the connection matrices for each layer into .npy files. Please refer to Section 3.1, 3.4 and Appendix A.2 in the paper for understanding the algorithms, and read the comments in the code for more details.

For compiling and running the code, go to "code/GraphSampling", open the terminal, run

cmake .
make
./GraphSampling

It will generate the Connection matrices for each sampling layer named as _poolX.npy or _unpoolX.npy and their corresponding obj meshes for visualization in "train/0422_graphAE_dfaust/ConnectionMatrices". In the code, I refer up and down sampling as "pool" and "unpool" just for simplification.

Connection matrix contains the connection information between the input graph and the output graph. Its dimension is out_point_num*(1+M*2). M is the maximum number of connected vertices in the input graph for all vertices in the output graph. For a vertex i in the output graph, the format of row i is {N, {id0, dist0}, {id1, dist1}, ..., {idN, distN}, {in_point_num, -1}, ..., {in_point_num, -1}} N is the number of its connected vertices in the input graph, idX are their index in the input graph, distX are the distance between vertex i's corresponding vertex in the input graph and vertex X (the lenght of the orange path in Figure 1 and 10). {in_point_num, -1} are padded after them.

For seeing the output graph of layer X, open vis_center_X.obj by MeshLab in vertex and edge rendering mode. For seeing the receptive field, open vis_receptive_X.obj in face rendering mode.

For customizing the code, open main.cpp and modify the path for the template mesh (line 33) and the output folder (line 46). For creating layers in sequence, use MeshCNN::add_pool_layer(int stride, int pool_radius, int unpool_radius) to add a new down-sampling layer and its corresponding up-sampling layer. When stride=1, the graph size won't change. As an example, in void set_7k_mesh_layers_dfaust(MeshCNN &meshCNN), we create 8 down-sampling and up-sampling layers.

Tips:

The current code doesn't support graph with multiple unconnected components. To enable that, one option is to uncomment line 320 and 321 in meshPooler to create edges between the components based on their euclidean distances.

The distX information is not really used in our network.

3. Network Training

Step One: Create Configuration files.

Create a configuration file in the training folder. We put three examples 10_conv_pool.config, 20_conv.config and 30_conv_res.config in "train/0422_graphAE_dfaust/". They are the configurations for Experiment 1.3, 1.4 and 1.5 in Table 2 in the paper. I wrote the meaning of each attribute in explanation.config.

By setting the attributes of connection_layer_lst, channel_lst, weight_num_lst and residual_rate_lst, you can freely design your own network architecture with all or part of the connection matrices we generated previously. But make sure the sizes of the output and input between two layers match.

Step Two: Training

Open graphAE_train.py, modify line 188 to the path of the configuration file, and run

python graphAE_train.py

It will save the temporal results, the network parameters and the tensorboardX log files in the directories written in the configuration file.

Step Three: Testing

Open graphAE_test.py, modify the paths and run

python graphAE_test.py

Tips:

  • For path to folders, always add "/" in the end, e.g. "/mnt/.../.../XXX/"

  • The network can still work well when the training data are augmented with global rotation and translation.

  • In the code, pcs means point clouds which refers to all the vertices in a mesh. weight_num refers to the size of the kernel basis. weights refers to the global kernel basis or the locally-variant kernels for every vertices. w_weights refers to the locally variant coefficients for every vertices.

4. Experiments with other graph CNN layers

Check the code in GraphAE27_new_compare and the training configurations in train/0223_GraphAE27_compare You will need to install the following packages.

pip install torch-scatter==latest+cu92 -f https://pytorch-geometric.com/whl/torch-1.6.0.html pip install torch-sparse==latest+cu92 -f https://pytorch-geometric.com/whl/torch-1.6.0.html pip install torch-cluster==latest+cu92 -f https://pytorch-geometric.com/whl/torch-1.6.0.html pip install torch-spline-conv==latest+cu92 -f https://pytorch-geometric.com/whl/torch-1.6.0.html pip install torch-geometric

Owner
Yi_Zhou
I am a PHD student at University of Southern California.
Yi_Zhou
[ACL 2022] LinkBERT: A Knowledgeable Language Model 😎 Pretrained with Document Links

LinkBERT: A Knowledgeable Language Model Pretrained with Document Links This repo provides the model, code & data of our paper: LinkBERT: Pretraining

Michihiro Yasunaga 264 Jan 01, 2023
Official implementation of the paper Visual Parser: Representing Part-whole Hierarchies with Transformers

Visual Parser (ViP) This is the official implementation of the paper Visual Parser: Representing Part-whole Hierarchies with Transformers. Key Feature

Shuyang Sun 117 Dec 11, 2022
Data and analysis code for an MS on SK VOC genomes phenotyping/neutralisation assays

Description Summary of phylogenomic methods and analyses used in "Immunogenicity of convalescent and vaccinated sera against clinical isolates of ance

Finlay Maguire 1 Jan 06, 2022
This repository contains the code for the ICCV 2019 paper "Occupancy Flow - 4D Reconstruction by Learning Particle Dynamics"

Occupancy Flow This repository contains the code for the project Occupancy Flow - 4D Reconstruction by Learning Particle Dynamics. You can find detail

189 Dec 29, 2022
Simple cross-platform application for DaVinci surgical video frame annotation

About DaVid is a simple cross-platform GUI for annotating robotic and endoscopic surgical actions for use in deep-learning research. Features Simple a

Cyril Zakka 4 Oct 09, 2021
Unified unsupervised and semi-supervised domain adaptation network for cross-scenario face anti-spoofing, Pattern Recognition

USDAN The implementation of Unified unsupervised and semi-supervised domain adaptation network for cross-scenario face anti-spoofing, which is accepte

11 Nov 03, 2022
なりすまし検出(anti-spoof-mn3)のWebカメラ向けデモ

FaceDetection-Anti-Spoof-Demo なりすまし検出(anti-spoof-mn3)のWebカメラ向けデモです。 モデルはPINTO_model_zoo/191_anti-spoof-mn3からONNX形式のモデルを使用しています。 Requirement mediapipe

KazuhitoTakahashi 8 Nov 18, 2022
使用OpenCV部署全景驾驶感知网络YOLOP,可同时处理交通目标检测、可驾驶区域分割、车道线检测,三项视觉感知任务,包含C++和Python两种版本的程序实现。本套程序只依赖opencv库就可以运行, 从而彻底摆脱对任何深度学习框架的依赖。

YOLOP-opencv-dnn 使用OpenCV部署全景驾驶感知网络YOLOP,可同时处理交通目标检测、可驾驶区域分割、车道线检测,三项视觉感知任务,依然是包含C++和Python两种版本的程序实现 onnx文件从百度云盘下载,链接:https://pan.baidu.com/s/1A_9cldU

178 Jan 07, 2023
A denoising autoencoder + adversarial losses and attention mechanisms for face swapping.

faceswap-GAN Adding Adversarial loss and perceptual loss (VGGface) to deepfakes'(reddit user) auto-encoder architecture. Updates Date Update 2018-08-2

3.2k Dec 30, 2022
Advbox is a toolbox to generate adversarial examples that fool neural networks in PaddlePaddle、PyTorch、Caffe2、MxNet、Keras、TensorFlow and Advbox can benchmark the robustness of machine learning models.

Advbox is a toolbox to generate adversarial examples that fool neural networks in PaddlePaddle、PyTorch、Caffe2、MxNet、Keras、TensorFlow and Advbox can benchmark the robustness of machine learning models

AdvBox 1.3k Dec 25, 2022
Official implementation of "Articulation Aware Canonical Surface Mapping"

Articulation-Aware Canonical Surface Mapping Nilesh Kulkarni, Abhinav Gupta, David F. Fouhey, Shubham Tulsiani Paper Project Page Requirements Python

Nilesh Kulkarni 56 Dec 16, 2022
Expressive Body Capture: 3D Hands, Face, and Body from a Single Image

Expressive Body Capture: 3D Hands, Face, and Body from a Single Image [Project Page] [Paper] [Supp. Mat.] Table of Contents License Description Fittin

Vassilis Choutas 1.3k Jan 07, 2023
Attention for PyTorch with Linear Memory Footprint

Attention for PyTorch with Linear Memory Footprint Unofficially implements https://arxiv.org/abs/2112.05682 to get Linear Memory Cost on Attention (+

11 Jan 09, 2022
This is the official implementation for the paper "(Almost) Free Incentivized Exploration from Decentralized Learning Agents" in NeurIPS 2021.

Observe then Incentivize Experiments This is the code used for the paper "(Almost) Free Incentivized Exploration from Decentralized Learning Agents",

Cong Shen Research Group 0 Mar 08, 2022
Code release for "Self-Tuning for Data-Efficient Deep Learning" (ICML 2021)

Self-Tuning for Data-Efficient Deep Learning This repository contains the implementation code for paper: Self-Tuning for Data-Efficient Deep Learning

THUML @ Tsinghua University 101 Dec 11, 2022
Model Zoo for MindSpore

Welcome to the Model Zoo for MindSpore In order to facilitate developers to enjoy the benefits of MindSpore framework, we will continue to add typical

MindSpore 226 Jan 07, 2023
This repository contains the source code of our work on designing efficient CNNs for computer vision

Efficient networks for Computer Vision This repo contains source code of our work on designing efficient networks for different computer vision tasks:

Sachin Mehta 386 Nov 26, 2022
SegNet model implemented using keras framework

keras-segnet Implementation of SegNet-like architecture using keras. Current version doesn't support index transferring proposed in SegNet article, so

185 Aug 30, 2022
Deeprl - Standard DQN and dueling network for simple games

DeepRL This code implements the standard deep Q-learning and dueling network with experience replay (memory buffer) for playing simple games. DQN algo

Yao Zhou 6 Apr 12, 2020
[ICCV 2021] Official Pytorch implementation for Discriminative Region-based Multi-Label Zero-Shot Learning SOTA results on NUS-WIDE and OpenImages

Discriminative Region-based Multi-Label Zero-Shot Learning (ICCV 2021) [arXiv][Project page coming soon] Sanath Narayan*, Akshita Gupta*, Salman Kh

Akshita Gupta 54 Nov 21, 2022