Google Kubernetes Engine (GKE) with a Snyk Kubernetes controller installed/configured for Snyk App

Overview

Deploy

Google Kubernetes Engine (GKE) with a Snyk Kubernetes controller installed/configured for Snyk App

This example provisions a Google Kubernetes Engine (GKE) cluster, the Snyk controller for the Kubernetes Integration, confiugures auto-import of workloads from the apples namespace and then deploys a sample workload as a Deployment into the cluster, to test that the Snyk Kubernetes integration is working using infrastructure-as-code. This demonstrates that you can manage both the Kubernetes objects themselves, in addition to underlying cloud infrastructure, using a single configuration language (in this case, Python), tool, and workflow.

Prerequisites

Ensure you have Python 3, a Pulumi account Pulumi Account, and the Pulumi CLI.

We will be deploying to Google Cloud Platform (GCP), so you will need an account. If you don't have an account, sign up for free here. In either case, follow the instructions here to connect Pulumi to your GCP account.

This example assumes that you have GCP's gcloud CLI on your path. This is installed as part of the GCP SDK.

Snyk Pre Steps

Note: These must be done before running this example. We will need an existing Snyk ORG which does not have Kubernetes integration configured.

  1. Select a Snyk ORG where you want to automatically setup the Kubernetes Integration for. It can be an empty Snyk ORG or even an existing one with projects but please ensure that the Kubernetes integration is not configured in this ORG

  2. Click on Integrations then click on Kubernetes and finally click on Connect. Make a note of the Integration ID we will need it shortly

alt tag

That's it you now ready to setup our Snyk Integration demo all from Pulumi using infrastructure-as-code, which will do the following

  • Create a GKE cluster
  • Deploy the Snyk Controller into the cluster
  • Setup the Snyk Kubernetes Integration for auto import of K8s workloads into Snyk App
  • Deploy a sample workload into the apples namespace as per our REGO policy file

Running the Snyk Kubernetes Integration Setup

After cloning this repo, cd into it and run these commands.

  1. Auth to Google Cloud using local authentication this is the easiest way to deploy this demo. There are other ways to configure pulumi with GCP but this is the easiest way for this demo

    $ gcloud auth login
  2. Create a new stack, which is an isolated deployment target for this example. Please use dev as the example is setup to use the stack name dev :

    $ pulumi stack init dev
  3. Set the required configuration variables for this program. You can leave the defaults but please ensure you setup a GKE cluster password as that is manfatory here:

    $ pulumi config set gcp:project [your-gcp-project-here] # Eg: snyk-cx-se-demo
    $ pulumi config set gcp:zone us-central1-c # any valid GCP zone here
    $ pulumi config set password --secret [your-cluster-password-here] # password for the cluster
    $ pulumi config set master_version 1.21.5-gke.1302 # any valid K8s master version on GKE

    By default, your cluster will have 3 nodes of type n1-standard-1. This is configurable, however; for instance if we'd like to choose 5 nodes of type n1-standard-2 instead you can do that, run these commands to setup a 3 node cluster:

    $ pulumi config set node_count 3
    $ pulumi config set node_machine_type n1-standard-2

    Finally lets set the Snyk Kubernetes integration settings we will need to automatically setup the the Kubernetes integration into our cluster for us. We will need our Kubernetes Integration ID and our Snyk App ORG ID which will be the same ID's

    $ pulumi config set snyk_K8s_integration_id K8S_INTEGRATION_ID #same as ORG_ID at the moment
    $ pulumi config set snyk_org_id ORG_ID # your Snyk ORG ID under settings

    This shows how stacks can be configurable in useful ways. You can even change these after provisioning.

    Once this is done you should have a file Pulumi.dev.yaml with content as follows

    config:
     gcp-K8s-integration-demo:master_version: 1.21.5-gke.1302
     gcp-K8s-integration-demo:node_count: "3"
     gcp-K8s-integration-demo:node_machine_type: n1-standard-2
     gcp-K8s-integration-demo:password:
         secure: AAABAFeuJ0fR0k2SFMSVoJZI+0GlNYDaggXpRgu5sD0bpo+EnF1p4w==
     gcp-K8s-integration-demo:snyk_K8s_integration_id: yyyy1234
     gcp-K8s-integration-demo:snyk_org_id: yyyy1234
     gcp:project: snyk-cx-se-demo
     gcp:zone: us-central1-c
  4. Deploy everything with the pulumi up command. This provisions all the GCP resources necessary for the Kubernetes Integration with Snyk, including your GKE cluster itself, Snyk Controller helm chart, and then deploys a Kubernetes Deployment running a Spring Boot application, all in a single step:

    $ pulumi up

    This will show you a preview, ask for confirmation, and then chug away at provisioning your Snyk K8s integration demo:

     ❯ pulumi up
     Previewing update (dev)
    
     View Live: https://app.pulumi.com/papicella/gcp-K8s-integration-demo/dev/previews/1db6492c-ae23-4e87-abf0-41e09fb62177
    
         Type                                                              Name                          Plan
     +   pulumi:pulumi:Stack                                               gcp-K8s-integration-demo-dev  create
     +   ├─ kubernetes:helm.sh/v3:Chart                                    snyk-monitor                  create
     +   │  ├─ kubernetes:core/v1:ServiceAccount                           snyk-monitor/snyk-monitor     create
     +   │  ├─ kubernetes:networking.k8s.io/v1:NetworkPolicy               snyk-monitor/snyk-monitor     create
     +   │  ├─ kubernetes:rbac.authorization.k8s.io/v1:ClusterRole         snyk-monitor                  create
     +   │  ├─ kubernetes:rbac.authorization.k8s.io/v1:ClusterRoleBinding  snyk-monitor                  create
     +   │  └─ kubernetes:apps/v1:Deployment                               snyk-monitor/snyk-monitor     create
     +   ├─ gcp:container:Cluster                                          pulumi-gke-cluster            create
     +   ├─ pulumi:providers:kubernetes                                    gke_k8s                       create
     +   ├─ kubernetes:core/v1:Namespace                                   snyk-monitor                  create
     +   ├─ kubernetes:core/v1:Namespace                                   apples                        create
     +   ├─ kubernetes:core/v1:ConfigMap                                   snyk-monitor-custom-policies  create
     +   ├─ kubernetes:core/v1:Service                                     springboot-employee-api       create
     +   ├─ kubernetes:core/v1:Secret                                      snyk-monitor                  create
     +   └─ kubernetes:apps/v1:Deployment                                  springboot-employee-api       create
    
     Resources:
         + 15 to create

    After about five minutes, your cluster will be ready, with the snyk controller installed, sample workload Deployment, auto imported into your Snyk ORG

    Do you want to perform this update? yes
     Updating (dev)
    
     View Live: https://app.pulumi.com/papicella/gcp-K8s-integration-demo/dev/updates/1
    
         Type                                                              Name                          Status
     +   pulumi:pulumi:Stack                                               gcp-K8s-integration-demo-dev  created
     +   ├─ kubernetes:helm.sh/v3:Chart                                    snyk-monitor                  created
     +   │  ├─ kubernetes:core/v1:ServiceAccount                           snyk-monitor/snyk-monitor     created
     +   │  ├─ kubernetes:networking.k8s.io/v1:NetworkPolicy               snyk-monitor/snyk-monitor     created
     +   │  ├─ kubernetes:rbac.authorization.k8s.io/v1:ClusterRole         snyk-monitor                  created
     +   │  ├─ kubernetes:rbac.authorization.k8s.io/v1:ClusterRoleBinding  snyk-monitor                  created
     +   │  └─ kubernetes:apps/v1:Deployment                               snyk-monitor/snyk-monitor     created
     +   ├─ gcp:container:Cluster                                          pulumi-gke-cluster            created
     +   ├─ pulumi:providers:kubernetes                                    gke_k8s                       created
     +   ├─ kubernetes:core/v1:Namespace                                   snyk-monitor                  created
     +   ├─ kubernetes:core/v1:Namespace                                   apples                        created
     +   ├─ kubernetes:core/v1:Service                                     springboot-employee-api       created
     +   ├─ kubernetes:core/v1:ConfigMap                                   snyk-monitor-custom-policies  created
     +   ├─ kubernetes:core/v1:Secret                                      snyk-monitor                  created
     +   └─ kubernetes:apps/v1:Deployment                                  springboot-employee-api       created
    
     Outputs:
         kubeconfig: "[secret]"
    
     Resources:
         + 15 created
    
     Duration: 6m28s

    The GKE cluster created on GCP

    alt tag

    The Snyk Kubernetes Integration automatically configured

    alt tag

    The sample workload auto imported from the apples namespace

    alt tag

    alt tag

    The Snyk Controller installed in the snyk-monitor namespace plus the config map and secret now managed by Pulumi

    ❯ kubectl get all -n snyk-monitor
     NAME                              READY   STATUS    RESTARTS   AGE
     pod/snyk-monitor-db67744d-szl79   1/1     Running   0          8m52s
    
     NAME                           READY   UP-TO-DATE   AVAILABLE   AGE
     deployment.apps/snyk-monitor   1/1     1            1           8m53s
    
     NAME                                    DESIRED   CURRENT   READY   AGE
     replicaset.apps/snyk-monitor-db67744d   1         1         1       8m53s
    
     ❯ kubectl get secret -n snyk-monitor -l app.kubernetes.io/managed-by=pulumi
     NAME           TYPE     DATA   AGE
     snyk-monitor   Opaque   2      42m
    
     ❯ kubectl get configmap -n snyk-monitor -l app.kubernetes.io/managed-by=pulumi
     NAME                           DATA   AGE
     snyk-monitor-custom-policies   1      42m

    REGO policy file used by the Snyk Controller which is currently hardcoded to only import workloads from the apples namespace. This can be changed in __main__.py and used as an external file rather then hard coded in the python code

    snyk_monitor_custom_policies_str = """package snyk
     orgs := ["%s"]
     default workload_events = false
     workload_events {
         input.metadata.namespace == "apples"
             input.kind != "CronJob"
             input.kind != "Service"
     }""" % (SNYK_ORG_ID)
  5. From here, you may take this config and use it either in your ~/.kube/config file, or just by saving it locally and plugging it into the KUBECONFIG envvar. All of your usual gcloud commands will work too, of course.

    For instance:

    $ pulumi stack output kubeconfig --show-secrets > kubeconfig.yaml
    $ KUBECONFIG=./kubeconfig.yaml kubectl get po -n apples
     NAME                                                READY   STATUS    RESTARTS   AGE
     springboot-employee-api-fyrj9hr2-66d8456f5f-hqqhx   1/1     Running   0          17m
  6. At this point, you have a running cluster. Feel free to modify your program, and run pulumi up to redeploy changes. The Pulumi CLI automatically detects what has changed and makes the minimal edits necessary to accomplish these changes. This could be altering the existing chart, adding new GCP or Kubernetes resources, or anything, really.

  7. Once you are done, you can destroy all of the resources, and the stack:

    $ pulumi destroy
    $ pulumi stack rm
    ❯ pulumi destroy
    Previewing destroy (dev)
    
    View Live: https://app.pulumi.com/papicella/gcp-K8s-integration-demo/dev/previews/44fb2e8b-641c-4f55-9b4b-4ffa78f340ee
    
        Type                                                              Name                          Plan
    -   pulumi:pulumi:Stack                                               gcp-K8s-integration-demo-dev  delete
    -   ├─ kubernetes:core/v1:Namespace                                   snyk-monitor                  delete
    -   ├─ kubernetes:core/v1:ConfigMap                                   snyk-monitor-custom-policies  delete
    -   ├─ kubernetes:core/v1:Secret                                      snyk-monitor                  delete
    -   ├─ kubernetes:core/v1:Namespace                                   apples                        delete
    -   ├─ kubernetes:core/v1:Service                                     springboot-employee-api       delete
    -   ├─ kubernetes:apps/v1:Deployment                                  springboot-employee-api       delete
    -   ├─ pulumi:providers:kubernetes                                    gke_k8s                       delete
    -   ├─ kubernetes:helm.sh/v3:Chart                                    snyk-monitor                  delete
    -   │  ├─ kubernetes:core/v1:ServiceAccount                           snyk-monitor/snyk-monitor     delete
    -   │  ├─ kubernetes:rbac.authorization.k8s.io/v1:ClusterRoleBinding  snyk-monitor                  delete
    -   │  ├─ kubernetes:networking.k8s.io/v1:NetworkPolicy               snyk-monitor/snyk-monitor     delete
    -   │  ├─ kubernetes:rbac.authorization.k8s.io/v1:ClusterRole         snyk-monitor                  delete
    -   │  └─ kubernetes:apps/v1:Deployment                               snyk-monitor/snyk-monitor     delete
    -   └─ gcp:container:Cluster                                          pulumi-gke-cluster            delete
    
    Outputs:
    - kubeconfig: "[secret]"
    
    Resources:
        - 15 to delete
    
    Do you want to perform this destroy? yes
    Destroying (dev)
    
    View Live: https://app.pulumi.com/papicella/gcp-K8s-integration-demo/dev/updates/2
    
        Type                                                              Name                          Status
    -   pulumi:pulumi:Stack                                               gcp-K8s-integration-demo-dev  deleted
    -   ├─ kubernetes:core/v1:Secret                                      snyk-monitor                  deleted
    -   ├─ kubernetes:core/v1:ConfigMap                                   snyk-monitor-custom-policies  deleted
    -   ├─ kubernetes:core/v1:Namespace                                   apples                        deleted
    -   ├─ kubernetes:core/v1:Namespace                                   snyk-monitor                  deleted
    -   ├─ kubernetes:core/v1:Service                                     springboot-employee-api       deleted
    -   ├─ kubernetes:apps/v1:Deployment                                  springboot-employee-api       deleted
    -   ├─ pulumi:providers:kubernetes                                    gke_k8s                       deleted
    -   ├─ kubernetes:helm.sh/v3:Chart                                    snyk-monitor                  deleted
    -   │  ├─ kubernetes:core/v1:ServiceAccount                           snyk-monitor/snyk-monitor     deleted
    -   │  ├─ kubernetes:networking.k8s.io/v1:NetworkPolicy               snyk-monitor/snyk-monitor     deleted
    -   │  ├─ kubernetes:rbac.authorization.k8s.io/v1:ClusterRoleBinding  snyk-monitor                  deleted
    -   │  ├─ kubernetes:rbac.authorization.k8s.io/v1:ClusterRole         snyk-monitor                  deleted
    -   │  └─ kubernetes:apps/v1:Deployment                               snyk-monitor/snyk-monitor     deleted
    -   └─ gcp:container:Cluster                                          pulumi-gke-cluster            deleted
    
    Outputs:
    - kubeconfig: "[secret]"
    
    Resources:
        - 15 deleted
    
    Duration: 3m40s
    
    The resources in the stack have been deleted, but the history and configuration associated with the stack are still maintained.
    If you want to remove the stack completely, run 'pulumi stack rm dev'.

Pas Apicella [pas at snyk.io] is an Solution Engineer APJ at Snyk
Owner
Pas Apicella
Pas Apicella
Define and run multi-container applications with Docker

Docker Compose Docker Compose is a tool for running multi-container applications on Docker defined using the Compose file format. A Compose file is us

Docker 28.2k Jan 08, 2023
Build and Push docker image in Python (luigi + docker-py)

Docker build images workflow in Python Since docker hub stopped building images for free accounts, I've been looking for another way to do it. I could

Fabien D. 2 Dec 15, 2022
MLops tools review for execution on multiple cluster types: slurm, kubernetes, dask...

MLops tools review focused on execution using multiple cluster types: slurm, kubernetes, dask...

4 Nov 30, 2022
Micro Data Lake based on Docker Compose

Micro Data Lake based on Docker Compose This is the implementation of a Minimum Data Lake

Abel Coronado 15 Jan 07, 2023
Tencent Yun tools with python

Tencent_Yun_tools 使用 python3.9 + 腾讯云 AccessKey 利用工具 使用之前请先填写config.ini配置文件 Usage python3 Tencent_rce.py -h Scanner python3 Tencent_rce.py -s 生成CSV

<img src="> 13 Dec 20, 2022
MagTape is a Policy-as-Code tool for Kubernetes that allows for evaluating Kubernetes resources against a set of defined policies to inform and enforce best practice configurations.

MagTape is a Policy-as-Code tool for Kubernetes that allows for evaluating Kubernetes resources against a set of defined policies to inform and enforce best practice configurations. MagTape includes

T-Mobile 143 Dec 27, 2022
A basic instruction for Kubernetes setup and understanding.

A basic instruction for Kubernetes setup and understanding Module ID Module Guide - Install Kubernetes Cluster k8s-install 3 Docker Core Technology mo

648 Jan 02, 2023
Build Netbox as a Docker container

netbox-docker The Github repository houses the components needed to build Netbox as a Docker container. Images are built using this code and are relea

Farshad Nick 1 Dec 18, 2021
Automate SSH in python easily!

RedExpect RedExpect makes automating remote machines over SSH very easy to do and is very fast in doing exactly what you ask of it. Based on ssh2-pyth

Red_M 19 Dec 17, 2022
CTF infrastructure deployment automation tool.

CTF infrastructure deployment automation tool. Focus on the challenges. Mirrored from

Fake News 1 Apr 12, 2022
Manage your azure VM easily!

Azure-manager Manage your VM in Azure using cookies.

Team 1injex 129 Dec 17, 2022
A honey token manager and alert system for AWS.

SpaceSiren SpaceSiren is a honey token manager and alert system for AWS. With this fully serverless application, you can create and manage honey token

287 Nov 09, 2022
Travis CI testing a Dockerfile based on Palantir's remix of Apache Cassandra, testing IaC, and testing integration health of Debian

Testing Palantir's remix of Apache Cassandra with Snyk & Travis CI This repository is to show Travis CI testing a Dockerfile based on Palantir's remix

Montana Mendy 1 Dec 20, 2021
A tool to convert AWS EC2 instances back and forth between On-Demand and Spot billing models.

ec2-spot-converter This tool converts existing AWS EC2 instances back and forth between On-Demand and 'persistent' Spot billing models while preservin

jcjorel 152 Dec 29, 2022
Deploy a simple Multi-Node Clickhouse Cluster with docker-compose in minutes.

Simple Multi Node Clickhouse Cluster I hate those single-node clickhouse clusters and manually installation, I mean, why should we: Running multiple c

Nova Kwok 11 Nov 18, 2022
The low-level, core functionality of boto 3.

botocore A low-level interface to a growing number of Amazon Web Services. The botocore package is the foundation for the AWS CLI as well as boto3. On

the boto project 1.2k Jan 03, 2023
A colony of interacting processes

NColony Infrastructure for running "colonies" of processes. Hacking $ tox Should DTRT -- if it passes, it means unit tests are passing, and 100% cover

23 Apr 04, 2022
Knock your images before these make you painful.

image-knocker Knock your images before these make you painful. Background One day, I had run my deep learning model training program and got off work

Yonghye Kwon 9 Jul 25, 2022
More than 130 check plugins for Icinga and other Nagios-compatible monitoring applications. Each plugin is a standalone command line tool (written in Python) that provides a specific type of check.

Python-based Monitoring Check Plugins Collection This Enterprise Class Check Plugin Collection offers a package of more than 130 Python-based, Nagios-

Linuxfabrik 119 Dec 27, 2022