RAMA: Rapid algorithm for multicut problem

Related tags

Deep LearningRAMA
Overview

RAMA: Rapid algorithm for multicut problem

Solves multicut (correlation clustering) problems orders of magnitude faster than CPU based solvers without compromising solution quality on NVIDIA GPU. It also gives lower bound guarantees. Paper available here.

animation

Requirements

We use CUDA 11.2 and GCC 10. Other combinations might also work but not tested. CMake is required for compilation.

Installation

C++ solver:

mkdir build
cd build
cmake ..
make -j 4

Python bindings:

We also provide python bindings using pybind. Simply run the following command:

python -m pip install git+https://github.com/pawelswoboda/RAMA.git

Usage

C++ solver:

We require multicut instance stored in a (.txt) file in the following format:

MULTICUT
i_1, j_1, cost_1
i_2, j_2, cost_2
...
i_n, j_n, cost_n

which corresponds to a graph with N edges. Where i and j should be vertex indices and cost is a floating point number. Positive costs implies that the nodes are similar and thus would prefer to be in same component and viceversa. Afterwards run:

./rama_text_input -f <PATH_TO_MULTICUT_INSTANCE>

For more details and downloading multicut instances see LPMP.

Python solver:

An example to compute multicut on a triangle graph:

import rama_py
rama_py.rama_cuda([0, 1, 2], [1, 2, 0], [1.1, -2, 3], rama_py.multicut_solver_options()) 

Parameters:

The default set of parameters are defined here which correspond to algorithm PD from the paper. This algorithm offers best compute time versus solution quality trade-off. Parameters for other variants are:

  • Fast purely primal algorithm (P): This algorithm can be slightly worse than sequential CPU heuristics but is 30 to 50 times faster.
    ./rama_text_input -f <PATH_TO_MULTICUT_INSTANCE> 0 0 0 0
  • Best primal algorithm (PD+) : This algorithm can even be better than CPU solvers in terms of solution quality as it uses dual information. Still, it is 5 to 10 faster than best CPU solver.
     ./rama_text_input -f <PATH_TO_MULTICUT_INSTANCE> 5 10 5 10
  • Dual algorithm (D): Use this algorithm for only computing the lower bound. Our lower bounds are slightly better than ICP and are computed up to 100 times faster.
     ./rama_text_input -f <PATH_TO_MULTICUT_INSTANCE> 5 10 0 0 5

Run ./rama_text_input --help for details about the parameters.

Owner
Paul Swoboda
Paul Swoboda
Deep Dual Consecutive Network for Human Pose Estimation (CVPR2021)

Beanie - is an asynchronous ODM for MongoDB, based on Motor and Pydantic. It uses an abstraction over Pydantic models and Motor collections to work wi

295 Dec 29, 2022
Reliable probability face embeddings

ProbFace, arxiv This is a demo code of training and testing [ProbFace] using Tensorflow. ProbFace is a reliable Probabilistic Face Embeddging (PFE) me

Kaen Chan 34 Dec 31, 2022
Fully Adaptive Bayesian Algorithm for Data Analysis (FABADA) is a new approach of noise reduction methods. In this repository is shown the package developed for this new method based on \citepaper.

Fully Adaptive Bayesian Algorithm for Data Analysis FABADA FABADA is a novel non-parametric noise reduction technique which arise from the point of vi

18 Oct 20, 2022
Code for "The Box Size Confidence Bias Harms Your Object Detector"

The Box Size Confidence Bias Harms Your Object Detector - Code Disclaimer: This repository is for research purposes only. It is designed to maintain r

Johannes G. 24 Dec 07, 2022
Pseudo lidar - (CVPR 2019) Pseudo-LiDAR from Visual Depth Estimation: Bridging the Gap in 3D Object Detection for Autonomous Driving

Pseudo-LiDAR from Visual Depth Estimation: Bridging the Gap in 3D Object Detection for Autonomous Driving This paper has been accpeted by Conference o

Yan Wang 881 Dec 27, 2022
Losslandscapetaxonomy - Taxonomizing local versus global structure in neural network loss landscapes

Taxonomizing local versus global structure in neural network loss landscapes Int

Yaoqing Yang 8 Dec 30, 2022
Tensorflow python implementation of "Learning High Fidelity Depths of Dressed Humans by Watching Social Media Dance Videos"

Learning High Fidelity Depths of Dressed Humans by Watching Social Media Dance Videos This repository is the official tensorflow python implementation

Yasamin Jafarian 287 Jan 06, 2023
FG-transformer-TTS Fine-grained style control in transformer-based text-to-speech synthesis

LST-TTS Official implementation for the paper Fine-grained style control in transformer-based text-to-speech synthesis. Submitted to ICASSP 2022. Audi

Li-Wei Chen 64 Dec 30, 2022
Implementation of Self-supervised Graph-level Representation Learning with Local and Global Structure (ICML 2021).

Self-supervised Graph-level Representation Learning with Local and Global Structure Introduction This project is an implementation of ``Self-supervise

MilaGraph 50 Dec 09, 2022
Predicting 10 different clothing types using Xception pre-trained model.

Predicting-Clothing-Types Predicting 10 different clothing types using Xception pre-trained model from Keras library. It is reimplemented version from

AbdAssalam Ahmad 3 Dec 29, 2021
Multiband spectro-radiometric satellite image analysis with K-means cluster algorithm

Multi-band Spectro Radiomertric Image Analysis with K-means Cluster Algorithm Overview Multi-band Spectro Radiomertric images are images comprising of

Chibueze Henry 6 Mar 16, 2022
Subpopulation detection in high-dimensional single-cell data

PhenoGraph for Python3 PhenoGraph is a clustering method designed for high-dimensional single-cell data. It works by creating a graph ("network") repr

Dana Pe'er Lab 42 Sep 05, 2022
An offline deep reinforcement learning library

d3rlpy: An offline deep reinforcement learning library d3rlpy is an offline deep reinforcement learning library for practitioners and researchers. imp

Takuma Seno 817 Jan 02, 2023
CrossNorm and SelfNorm for Generalization under Distribution Shifts (ICCV 2021)

CrossNorm (CN) and SelfNorm (SN) (Accepted at ICCV 2021) This is the official PyTorch implementation of our CNSN paper, in which we propose CrossNorm

100 Dec 28, 2022
Elegy is a framework-agnostic Trainer interface for the Jax ecosystem.

Elegy Elegy is a framework-agnostic Trainer interface for the Jax ecosystem. Main Features Easy-to-use: Elegy provides a Keras-like high-level API tha

435 Dec 30, 2022
MEDS: Enhancing Memory Error Detection for Large-Scale Applications

MEDS: Enhancing Memory Error Detection for Large-Scale Applications Prerequisites cmake and clang Build MEDS supporting compiler $ make Build Using Do

Secomp Lab at Purdue University 34 Dec 14, 2022
Implementation of paper: "Image Super-Resolution Using Dense Skip Connections" in PyTorch

SRDenseNet-pytorch Implementation of paper: "Image Super-Resolution Using Dense Skip Connections" in PyTorch (http://openaccess.thecvf.com/content_ICC

wxy 114 Nov 26, 2022
Semi-supervised Adversarial Learning to Generate Photorealistic Face Images of New Identities from 3D Morphable Model

Semi-supervised Adversarial Learning to Generate Photorealistic Face Images of New Identities from 3D Morphable Model Baris Gecer 1, Binod Bhattarai 1

Baris Gecer 190 Dec 29, 2022
PyTorch code accompanying our paper on Maximum Entropy Generators for Energy-Based Models

Maximum Entropy Generators for Energy-Based Models All experiments have tensorboard visualizations for samples / density / train curves etc. To run th

Rithesh Kumar 135 Oct 27, 2022
Build an Amazon SageMaker Pipeline to Transform Raw Texts to A Knowledge Graph

Build an Amazon SageMaker Pipeline to Transform Raw Texts to A Knowledge Graph This repository provides a pipeline to create a knowledge graph from ra

AWS Samples 3 Jan 01, 2022