Segmentation vgg16 fcn - cityscapes

Overview

VGGSegmentation

Segmentation vgg16 fcn - cityscapes Priprema skupa

skripta prepare_dataset_downsampled.py

Iz slika cityscapesa izrezuje haubu automobila, i smanjuje sliku na željenu rezoluciju, to zapisuje u tfrecords formatu. Treba zadati putanju do cityscapesa, izlazni direktorij gdje će se spremati tfrecordsi i zadati željenu rezoluciju.

Priprema težina vgg-a

Da bi se model mogao fine-tuneati treba na disku imati spremljene težine mreže (prethodno naučene na nekom drugom skupu). One se mogu skinuti s interneta u raznim formatima.

Ja sam ih imala spremljene u sljedećim datotekama: conv1_1_biases.bin conv1_1_weights.bin conv1_2_biases.bin conv1_2_weights.bin conv2_1_biases.bin conv2_1_weights.bin conv2_2_biases.bin conv2_2_weights.bin conv3_1_biases.bin conv3_1_weights.bin conv3_2_biases.bin conv3_2_weights.bin conv3_3_biases.bin conv3_3_weights.bin conv4_1_biases.bin conv4_1_weights.bin conv4_2_biases.bin conv4_2_weights.bin conv4_3_biases.bin conv4_3_weights.bin conv5_1_biases.bin conv5_1_weights.bin conv5_2_biases.bin conv5_2_weights.bin conv5_3_biases.bin conv5_3_weights.bin fc6_biases.bin fc6_weights.bin fc7_biases.bin fc7_weights.bin fc8_biases.bin fc8_weights.bin

Ako će se težine učitavati iz ckpt. datoteke npr vgg_16.ckpt, onda će i u kodu trebati mjenjati metodu create_init_op unutar model.py

Konfiguracija

config/cityscapes.py - primjer fajla s konfiguracijom za treniranje

Treba promjeniti putanje

model_path da pokazuje do py fajla s definicijom modela (primjer za takve dvije defincije su model.py i model2.py)

dataset_dir - da pokazuje do foldera s prethodno pripremljenim tfrecordsima (koji sadrzi subdirektorije train i val)

treba paziti pri razlicitim rezolucijama da se promjene zastavice img_width i height

ostale zastavice se većinom odnose na treniranje modela to mjenjati prema potrebi.

subsample_factor zastavica bi označavala faktor za koji se rezolucija mape smanji na kraju mreže. Taj faktor će ovisiti o samome modelu koji se trenira, ako model ima tri pooling sloja 2*2 svaki taj sloj će sliku smanjiti za dva puta pa će ukupno smanjnjenje biti za faktor osam

train.py - skripta koja pokreće skriptu treniranja, nakon svake epohe model se evaluira na skupu za validaciju.

Nb workflows - A workflow platform which allows you to run parameterized notebooks programmatically

NB Workflows Description If SQL is a lingua franca for querying data, Jupyter sh

Xavier Petit 6 Aug 18, 2022
PyTorch implementation of Convolutional Neural Fabrics http://arxiv.org/abs/1606.02492

PyTorch implementation of Convolutional Neural Fabrics arxiv:1606.02492 There are some minor differences: The raw image is first convolved, to obtain

Anuvabh Dutt 25 Dec 22, 2021
NLP From Scratch Without Large-Scale Pretraining: A Simple and Efficient Framework

NLP From Scratch Without Large-Scale Pretraining This repository contains the code, pre-trained model checkpoints and curated datasets for our paper:

Xingcheng Yao 224 Dec 08, 2022
ICCV2021, Tokens-to-Token ViT: Training Vision Transformers from Scratch on ImageNet

Tokens-to-Token ViT: Training Vision Transformers from Scratch on ImageNet, ICCV 2021 Update: 2021/03/11: update our new results. Now our T2T-ViT-14 w

YITUTech 1k Dec 31, 2022
PyTorch implementation for our AAAI 2022 Paper "Graph-wise Common Latent Factor Extraction for Unsupervised Graph Representation Learning"

deepGCFX PyTorch implementation for our AAAI 2022 Paper "Graph-wise Common Latent Factor Extraction for Unsupervised Graph Representation Learning" Pr

Thilini Cooray 4 Aug 11, 2022
This project is a re-implementation of MASTER: Multi-Aspect Non-local Network for Scene Text Recognition by MMOCR

This project is a re-implementation of MASTER: Multi-Aspect Non-local Network for Scene Text Recognition by MMOCR,which is an open-source toolbox based on PyTorch. The overall architecture will be sh

Jianquan Ye 82 Nov 17, 2022
Generating images from caption and vice versa via CLIP-Guided Generative Latent Space Search

CLIP-GLaSS Repository for the paper Generating images from caption and vice versa via CLIP-Guided Generative Latent Space Search An in-browser demo is

Federico Galatolo 172 Dec 22, 2022
My tensorflow implementation of "A neural conversational model", a Deep learning based chatbot

Deep Q&A Table of Contents Presentation Installation Running Chatbot Web interface Results Pretrained model Improvements Upgrade Presentation This wor

Conchylicultor 2.9k Dec 28, 2022
Shallow Convolutional Neural Networks for Human Activity Recognition using Wearable Sensors

-IEEE-TIM-2021-1-Shallow-CNN-for-HAR [IEEE TIM 2021-1] Shallow Convolutional Neural Networks for Human Activity Recognition using Wearable Sensors All

Wenbo Huang 1 May 17, 2022
DilatedNet in Keras for image segmentation

Keras implementation of DilatedNet for semantic segmentation A native Keras implementation of semantic segmentation according to Multi-Scale Context A

303 Mar 15, 2022
Convolutional neural network that analyzes self-generated images in a variety of languages to find etymological similarities

This project is a convolutional neural network (CNN) that analyzes self-generated images in a variety of languages to find etymological similarities. Specifically, the goal is to prove that computer

1 Feb 03, 2022
Cross-Task Consistency Learning Framework for Multi-Task Learning

Cross-Task Consistency Learning Framework for Multi-Task Learning Tested on numpy(v1.19.1) opencv-python(v4.4.0.42) torch(v1.7.0) torchvision(v0.8.0)

Aki Nakano 2 Jan 08, 2022
mPose3D, a mmWave-based 3D human pose estimation model.

mPose3D, a mmWave-based 3D human pose estimation model.

KylinChen 35 Nov 08, 2022
PyTorch implementation of ShapeConv: Shape-aware Convolutional Layer for RGB-D Indoor Semantic Segmentation.

Shape-aware Convolutional Layer (ShapeConv) PyTorch implementation of ShapeConv: Shape-aware Convolutional Layer for RGB-D Indoor Semantic Segmentatio

Hanchao Leng 82 Dec 29, 2022
This is the offical website for paper ''Category-consistent deep network learning for accurate vehicle logo recognition''

The Pytorch Implementation of Category-consistent deep network learning for accurate vehicle logo recognition This is the offical website for paper ''

Wanglong Lu 28 Oct 29, 2022
An end-to-end library for editing and rendering motion of 3D characters with deep learning [SIGGRAPH 2020]

Deep-motion-editing This library provides fundamental and advanced functions to work with 3D character animation in deep learning with Pytorch. The co

1.2k Dec 29, 2022
Adversarial Color Enhancement: Generating Unrestricted Adversarial Images by Optimizing a Color Filter

ACE Please find the preliminary version published at BMVC 2020 in the folder BMVC_version, and its extended journal version in Journal_version. Datase

28 Dec 25, 2022
Re-implement CycleGAN in Tensorlayer

CycleGAN_Tensorlayer Re-implement CycleGAN in TensorLayer Original CycleGAN Improved CycleGAN with resize-convolution Prerequisites: TensorLayer Tenso

89 Aug 15, 2022
PyTorch implementation code for the paper MixCo: Mix-up Contrastive Learning for Visual Representation

How to Reproduce our Results This repository contains PyTorch implementation code for the paper MixCo: Mix-up Contrastive Learning for Visual Represen

opcrisis 46 Dec 15, 2022