Code for "Causal autoregressive flows" - AISTATS, 2021

Related tags

Deep Learningcarefl
Overview

Code for "Causal Autoregressive Flow"

This repository contains code to run and reproduce experiments presented in Causal Autoregressive Flows, presented at the 24th International Conference on Artificial Intelligence and Statistics (AISTATS 2021).

The repository originally contained the code to reproduce results presented in Autoregressive flow-based causal discovery and inference, presented at the 2nd ICML workshop on Invertible Neural Networks, Normalizing Flows, and Explicit Likelihood Models (2020). Switch to the workshop branch to access this version of the code.

Dependencies

This project was tested with the following versions:

  • python 3.7
  • numpy 1.18.2
  • pytorch 1.4
  • scikit-learn 0.22.2
  • scipy 1.4.1
  • matplotlib 3.2.1
  • seaborn 0.10

This project uses normalizing flows implementation from this repository.

Usage

The main.py script is the main gateway to reproduce the experiments detailed in the mansucript, and is straightforward to use. Type python main.py -h to learn about the options.

Hyperparameters can be changed through the configuration files under configs/. The main.py is setup to read the corresponding config file for each experiment, but this can be overwritten using the -y or --config flag.

The results are saved under the run/ folder. This can be changed using the --run flag.

Running the main.py script will only produce data for a single set of parameters, which are specified in the config file. These parameters include the dataset type, the number of simulations, the algorithm, the number of observations, the architectural parameters for the neural networks (number of layers, dimension of the hidden layer...), etc...

To reproduce the figures in the manuscript, the script should be run multiple time for each different combination of parameters, to generate the data used for the plots. Convience scripts are provided to do this in parallel using SLURM (see below). These make use of certain debugging flags that overwrite certain fields in the config file.

Finally, the flow.scale field in the config files is used to switch from CAREFL to CAREFL-NS by setting it to false.

Examples

Experiments where run using the SLURM system. The slurm_main_cpu.sbatch is used to run jobs on CPU, and slurm_main.sbatch for the GPU.

To run simulations in parallel:

for SIZE in 25 50 75 100 150 250 500; do
    for ALGO in lrhyv reci anm; do
        for DSET in linear hoyer2009 nueralnet_l1 mnm veryhighdim; do
            sbatch slurm_main_cpu.sbatch -s -m $DSET -a $ALGO -n $SIZE
        done
    done
done
ALGO=carefl
for SIZE in 25 50 75 100 150 250 500; do
    for DSET in linear hoyer2009 nueralnet_l1 mnm veryhighdim; do
        sbatch slurm_main_cpu.sbatch -s -m $DSET -a $ALGO -n $SIZE
    done
done

To run interventions:

for SIZE in 250 500 750 1000 1250 1500 2000 2500; do
    for ALGO in gp linear; do
        sbatch slurm_main_cpu.sbatch -i -a $ALGO -n $SIZE
    done
done
ALGO=carefl
for SIZE in 250 500 750 1000 1250 1500 2000 2500; do
    sbatch slurm_main_cpu.sbatch -i -a $ALGO -n $SIZE
done

To run arrow of time on EEG data:

for ALGO in LRHyv RECI ANM; do
    for IDX in {0..117}; do
        sbatch slurm_main_cpu.sbatch -e -n $IDX -a $ALGO --n-sims 11
    done
done
ALGO=carefl
for IDX in {0..117}; do
    sbatch slurm_main.sbatch -e -n $IDX -a $ALGO --n-sims 11
done

To run interventions on fMRI data (this experiment outputs to standard output):

python main.py -f

To run pairs:

for IDX in {1..108}; do
    sbatch slurm_main_cpu.sbatch -p -n $IDX --n-sims 10
done

Reference

If you find this code helpful/inspiring for your research, we would be grateful if you cite the following:

@inproceedings{khemakhem2021causal,
  title = { Causal Autoregressive Flows },
  author = {Khemakhem, Ilyes and Monti, Ricardo and Leech, Robert and Hyvarinen, Aapo},
  booktitle = {Proceedings of The 24th International Conference on Artificial Intelligence and Statistics},
  pages = {3520--3528},
  year = {2021},
  editor = {Banerjee, Arindam and Fukumizu, Kenji},
  volume = {130},
  series = {Proceedings of Machine Learning Research},
  month = {13--15 Apr},
  publisher = {PMLR}
}

License

A full copy of the license can be found here.

MIT License

Copyright (c) 2020 Ilyes Khemakhem and Ricardo Pio Monti

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
Owner
Ricardo Pio Monti
Ricardo Pio Monti
Disentangled Face Attribute Editing via Instance-Aware Latent Space Search, accepted by IJCAI 2021.

Instance-Aware Latent-Space Search This is a PyTorch implementation of the following paper: Disentangled Face Attribute Editing via Instance-Aware Lat

67 Dec 21, 2022
Unsupervised Foreground Extraction via Deep Region Competition

Unsupervised Foreground Extraction via Deep Region Competition [Paper] [Code] The official code repository for NeurIPS 2021 paper "Unsupervised Foregr

28 Nov 06, 2022
Face-Recognition-based-Attendance-System - An implementation of Attendance System in python.

Face-Recognition-based-Attendance-System A real time implementation of Attendance System in python. Pre-requisites To understand the implentation of F

Muhammad Zain Ul Haque 1 Dec 31, 2021
GNNAdvisor: An Efficient Runtime System for GNN Acceleration on GPUs

GNNAdvisor: An Efficient Runtime System for GNN Acceleration on GPUs [Paper, Slides, Video Talk] at USENIX OSDI'21 @inproceedings{GNNAdvisor, title=

YUKE WANG 47 Jan 03, 2023
Code for ICCV2021 paper PARE: Part Attention Regressor for 3D Human Body Estimation

PARE: Part Attention Regressor for 3D Human Body Estimation [ICCV 2021] PARE: Part Attention Regressor for 3D Human Body Estimation, Muhammed Kocabas,

Muhammed Kocabas 277 Jan 03, 2023
Pytorch implementation of MaskGIT: Masked Generative Image Transformer

Pytorch implementation of MaskGIT: Masked Generative Image Transformer

Dominic Rampas 247 Dec 16, 2022
Proposal, Tracking and Segmentation (PTS): A Cascaded Network for Video Object Segmentation

Proposal, Tracking and Segmentation (PTS): A Cascaded Network for Video Object Segmentation By Qiang Zhou*, Zilong Huang*, Lichao Huang, Han Shen, Yon

Forest 117 Apr 01, 2022
GB-CosFace: Rethinking Softmax-based Face Recognition from the Perspective of Open Set Classification

GB-CosFace: Rethinking Softmax-based Face Recognition from the Perspective of Open Set Classification This is the official pytorch implementation of t

Alibaba Cloud 5 Nov 14, 2022
This is a TensorFlow implementation for C2-Rec

This is a TensorFlow implementation for C2-Rec We refer to the repo SASRec. Requirements requirement.txt Datasets This repo includes Amazon Beauty dat

7 Nov 14, 2022
Nb workflows - A workflow platform which allows you to run parameterized notebooks programmatically

NB Workflows Description If SQL is a lingua franca for querying data, Jupyter sh

Xavier Petit 6 Aug 18, 2022
Source code of all the projects of Udacity Self-Driving Car Engineer Nanodegree.

self-driving-car In this repository I will share the source code of all the projects of Udacity Self-Driving Car Engineer Nanodegree. Hope this might

Andrea Palazzi 2.4k Dec 29, 2022
ParmeSan: Sanitizer-guided Greybox Fuzzing

ParmeSan: Sanitizer-guided Greybox Fuzzing ParmeSan is a sanitizer-guided greybox fuzzer based on Angora. Published Work USENIX Security 2020: ParmeSa

VUSec 158 Dec 31, 2022
masscan + nmap + Finger

说明 个人根据使用习惯修改masnmap而来的一个小工具。调用masscan做全端口扫描,再调用nmap做服务识别,最后调用Finger做Web指纹识别。工具使用场景适合风险探测排查、众测等。 使用方法 安装依赖 pip3 install -r requirements.txt -i https:/

Ryan 3 Mar 25, 2022
CaFM-pytorch ICCV ACCEPT Introduction of dataset VSD4K

CaFM-pytorch ICCV ACCEPT Introduction of dataset VSD4K Our dataset VSD4K includes 6 popular categories: game, sport, dance, vlog, interview and city.

96 Jul 05, 2022
In real-world applications of machine learning, reliable and safe systems must consider measures of performance beyond standard test set accuracy

PixMix Introduction In real-world applications of machine learning, reliable and safe systems must consider measures of performance beyond standard te

Andy Zou 79 Dec 30, 2022
Source code of article "Towards Toxic and Narcotic Medication Detection with Rotated Object Detector"

Towards Toxic and Narcotic Medication Detection with Rotated Object Detector Introduction This is the source code of article: Towards Toxic and Narcot

Woody. Wang 3 Oct 29, 2022
PyTorch implementation of "Dataset Knowledge Transfer for Class-Incremental Learning Without Memory" (WACV2022)

Dataset Knowledge Transfer for Class-Incremental Learning Without Memory [Paper] [Slides] Summary Introduction Installation Reproducing results Citati

Habib Slim 5 Dec 05, 2022
[AI6122] Text Data Management & Processing

[AI6122] Text Data Management & Processing is an elective course of MSAI, SCSE, NTU, Singapore. The repository corresponds to the AI6122 of Semester 1, AY2021-2022, starting from 08/2021. The instruc

HT. Li 1 Jan 17, 2022
Multi-task Self-supervised Object Detection via Recycling of Bounding Box Annotations (CVPR, 2019)

Multi-task Self-supervised Object Detection via Recycling of Bounding Box Annotations (CVPR 2019) To make better use of given limited labels, we propo

126 Sep 13, 2022
Solving reinforcement learning tasks which require language and vision

Multimodal Reinforcement Learning JAX implementations of the following multimodal reinforcement learning approaches. Dual-coding Episodic Memory from

Henry Prior 31 Feb 26, 2022