An atmospheric growth and evolution model based on the EVo degassing model and FastChem 2.0

Related tags

Deep LearningEVolve
Overview

EVolve

Linking planetary mantles to atmospheric chemistry through volcanism using EVo and FastChem.

Overview

EVolve is a linked mantle degassing and atmospheric growth code, which models the growth of a rocky planet's secondary atmosphere under the influence of volcanism.

Installation

EVolve is written in Python3, and is incompatible with Python 2.7. Two very useful tools to set up python environments:
Pip - package installer for Python
Anaconda - virtual environment manager

  1. Clone the repository with submodules and enter directory

    git clone --recurse-submodules [email protected]:pipliggins/evolve.git
    

    Note: If you don't clone with submodules you won't get the two modules used to run EVolve, the EVo volcanic degassing model and the FastChem equilibrium chemistry code.

  2. Compile FastChem:

    cd fastchem
    git submodules update --init --recursive
    mkdir build & cd build
    cmake -DUSE_PYTHON==ON ..
    make
    

    This will pull the pybind11 module required for the python bindings, and compile both the C++ code, and the python bindings which are used in EVolve to conect to FastChem.

    Note: FastChem is an external C++ module, used to compute atmospheric equilibrium chemistry. Therefore, to run on Windows, I recommend using WSL (Windows Subsystem for Linux) to make the process of compiling the C code easier. If you encounter installation issues relating to the cmake version, I found the accepted answer here to work for me. A list of the suggested terminal commands can also be found at the bottom of this README file.

  3. Install dependencies using either Pip install or Anaconda. Check requirements.txt for full details. If using Pip, install all dependencies from the main directory of EVolve using

    pip3 install -r requirements.txt
    

    Troubleshoot: The GMPY2 module requires several libraries (MPFR and MPC) which are not pre-loaded in some operating systems, particularly Windows. If the GMPY2 module does not install, or you have other install issues, try

    pip3 install wheel
    sudo apt install libgmp-dev libmpfr-dev libmpc-dev
    pip3 install -r requirements.txt
    

Running EVolve

EVolve can be run either with or without the FastChem equilibrium chemistry in the atmosphere. To run Evolve with FastChem, from the main directory of EVolve run

python evolve.py inputs.yaml --fastchem

The available tags are:

  • --fastchem ).This will use fastchem to run equilibrium chemistry in the atmosphere, producing more chemical species than the magma degassing model uses and enabling the atmospheric equilibrium temperature to be lower than magmatic.

  • --nocrust ).This option stops a crustal reservoir from being formed out of the degassed melt which has been erupted. Instead, the degassed melt and any volatiles remaining in it are re-incorporated back into the mantle. If this tag is NOT used, the mantle mass will gradually reduce as there is no mechanism for re-introducing the crustal material back into the mantle implemented here.

All the input models for EVolve, and the submodules EVo and FastChem are stored in the 'inputs' folder:

Filename Relevant module Properties
atm.yaml EVolve main Sets the pre-existing atmospheric chemistry and surface pressures + temperatures for the planet
mantle.yaml EVolve main Sets the initial planetary mantle/rocky body properties, including temperature, mass, fO2, the mantle volatile concentrations and the volcanic intrusive:extrusive ratio
planet.yaml EVolve main Sets generic planetary properties and important run settings, including planetary mass, radius, the amount of mantle melting occurring at each timestep and the size & number of timesteps the model will run.
chem.yaml EVo Contains the major oxide composition of the magma being input to EVo
env.yaml EVo Contains the majority of the run settings and volatile contents for the EVo run.
output.yaml EVo Stops any graphical input from EVo compared to it's default settings
config.input FastChem Sets the names and locations for input and output files for FastChem, and output settings
parameters.dat FastChem Location of elemental abundance files, and configuration parameters

Files highlighted in bold should be edited by the user; all others are optimied for EVolve and/or will be edited by the code as it is running. Explainations for each parameter setting in the EVolve files can be found at the bottom of this README file.

As EVolve runs, it creates and updates files in the outputs folder as follows:

Filename Data
atmosphere_out.csv Planetary surface pressure and atmospheric composition for tracked molecules in units of volume mixing ratios (actually mo fraction), calculated after each time step
mantle_out.csv Mantle volatile budget and fO2 after each timestep
volc_out.csv The final pressure iteration from the EVo output file in each timestep (storing melt volatile contents, atomic volatile contents, gas speciation in mol & wt fractions, etc)
fc_input.csv Generated if fastchem is selected: The input to FastChem after atmospheric mixing, and hydrogen escape if that is occuring, for each timestep.
fc_out.csv Generated if fastchem is selected: The results from FastChem after each timestep

Installation help for WSL

If you see an error saying that the installed version of cmake is too low to install FastChem, try these commands: Please note this is just a suggestion based on what worked for me, try these workarounds at your own risk!

sudo apt-get update
sudo apt-get install apt-transport-https ca-certificates gnupg software-properties-common wget

wget -O - https://apt.kitware.com/keys/kitware-archive-latest.asc 2>/dev/null | sudo apt-key add -

sudo apt-add-repository 'deb https://apt.kitware.com/ubuntu/ bionic main'
sudo apt-get update

sudo apt-get install cmake
Owner
Pip Liggins
3rd year PhD student studying Earth Sciences. I model volcanic degassing chemistry and its impact on planetary atmospheres.
Pip Liggins
Perform zero-order Hankel Transform for an 1D array (float or real valued).

perform zero-order Hankel Transform for an 1D array (float or real valued). An discrete form of Parseval theorem is guaranteed. Suit for iterative problems.

1 Jan 17, 2022
clDice - a Novel Topology-Preserving Loss Function for Tubular Structure Segmentation

README clDice - a Novel Topology-Preserving Loss Function for Tubular Structure Segmentation CVPR 2021 Authors: Suprosanna Shit and Johannes C. Paetzo

110 Dec 29, 2022
Attention-guided gan for synthesizing IR images

SI-AGAN Attention-guided gan for synthesizing IR images This repository contains the Tensorflow code for "Pedestrian Gender Recognition by Style Trans

1 Oct 25, 2021
Implementation for Paper "Inverting Generative Adversarial Renderer for Face Reconstruction"

StyleGAR TODO: add arxiv link Implementation of Inverting Generative Adversarial Renderer for Face Reconstruction TODO: for test Currently, some model

155 Oct 27, 2022
4st place solution for the PBVS 2022 Multi-modal Aerial View Object Classification Challenge - Track 1 (SAR) at PBVS2022

A Two-Stage Shake-Shake Network for Long-tailed Recognition of SAR Aerial View Objects 4st place solution for the PBVS 2022 Multi-modal Aerial View Ob

LinpengPan 5 Nov 09, 2022
PixelPick This is an official implementation of the paper "All you need are a few pixels: semantic segmentation with PixelPick."

PixelPick This is an official implementation of the paper "All you need are a few pixels: semantic segmentation with PixelPick." [Project page] [Paper

Gyungin Shin 59 Sep 25, 2022
Fine-Tune EleutherAI GPT-Neo to Generate Netflix Movie Descriptions in Only 47 Lines of Code Using Hugginface And DeepSpeed

GPT-Neo-2.7B Fine-Tuning Example Using HuggingFace & DeepSpeed Installation cd venv/bin ./pip install -r ../../requirements.txt ./pip install deepspe

Nikita 180 Jan 05, 2023
Functional deep learning

Pipeline abstractions for deep learning. Full documentation here: https://lf1-io.github.io/padl/ PADL: is a pipeline builder for PyTorch. may be used

LF1 101 Nov 09, 2022
Reimplementation of the paper `Human Attention Maps for Text Classification: Do Humans and Neural Networks Focus on the Same Words? (ACL2020)`

Human Attention for Text Classification Re-implementation of the paper Human Attention Maps for Text Classification: Do Humans and Neural Networks Foc

Shunsuke KITADA 15 Dec 13, 2021
Code for How To Create A Fully Automated AI Based Trading System With Python

AI Based Trading System This code works as a boilerplate for an AI based trading system with yfinance as data source and RobinHood or Alpaca as broker

Rubén 196 Jan 05, 2023
Focal Loss for Dense Rotation Object Detection

Convert ResNets weights from GluonCV to Tensorflow Abstract GluonCV released some new resnet pre-training weights and designed some new resnets (such

17 Nov 24, 2021
[CVPR'21] MonoRUn: Monocular 3D Object Detection by Reconstruction and Uncertainty Propagation

MonoRUn MonoRUn: Monocular 3D Object Detection by Reconstruction and Uncertainty Propagation. CVPR 2021. [paper] Hansheng Chen, Yuyao Huang, Wei Tian*

同济大学智能汽车研究所综合感知研究组 ( Comprehensive Perception Research Group under Institute of Intelligent Vehicles, School of Automotive Studies, Tongji University) 96 Dec 10, 2022
Scalable, Portable and Distributed Gradient Boosting (GBDT, GBRT or GBM) Library, for Python, R, Java, Scala, C++ and more. Runs on single machine, Hadoop, Spark, Dask, Flink and DataFlow

eXtreme Gradient Boosting Community | Documentation | Resources | Contributors | Release Notes XGBoost is an optimized distributed gradient boosting l

Distributed (Deep) Machine Learning Community 23.6k Dec 31, 2022
This package contains a PyTorch Implementation of IB-GAN of the submitted paper in AAAI 2021

The PyTorch implementation of IB-GAN model of AAAI 2021 This package contains a PyTorch implementation of IB-GAN presented in the submitted paper (IB-

Insu Jeon 9 Mar 30, 2022
Viperdb - A tiny log-structured key-value database written in pure Python

ViperDB 🐍 ViperDB is a lightweight embedded key-value store written in pure Pyt

17 Oct 17, 2022
Stochastic Tensor Optimization for Robot Motion - A GPU Robot Motion Toolkit

STORM Stochastic Tensor Optimization for Robot Motion - A GPU Robot Motion Toolkit [Install Instructions] [Paper] [Website] This package contains code

NVIDIA Research Projects 101 Dec 12, 2022
Offline Reinforcement Learning with Implicit Q-Learning

Offline Reinforcement Learning with Implicit Q-Learning This repository contains the official implementation of Offline Reinforcement Learning with Im

Ilya Kostrikov 125 Dec 31, 2022
Experiments on Flood Segmentation on Sentinel-1 SAR Imagery with Cyclical Pseudo Labeling and Noisy Student Training

Flood Detection Challenge This repository contains code for our submission to the ETCI 2021 Competition on Flood Detection (Winning Solution #2). Acco

Siddha Ganju 108 Dec 28, 2022
This is the official code for the paper "Ad2Attack: Adaptive Adversarial Attack for Real-Time UAV Tracking".

Ad^2Attack:Adaptive Adversarial Attack on Real-Time UAV Tracking Demo video 📹 Our video on bilibili demonstrates the test results of Ad^2Attack on se

Intelligent Vision for Robotics in Complex Environment 10 Nov 07, 2022
In the case of your data having only 1 channel while want to use timm models

timm_custom Description In the case of your data having only 1 channel while want to use timm models (with or without pretrained weights), run the fol

2 Nov 26, 2021