Official PyTorch implementation of "ArtFlow: Unbiased Image Style Transfer via Reversible Neural Flows"

Related tags

Deep LearningArtFlow
Overview

ArtFlow

Official PyTorch implementation of the paper:

ArtFlow: Unbiased Image Style Transfer via Reversible Neural Flows
Jie An*, Siyu Huang*, Yibing Song, Dejing Dou, Wei Liu and Jiebo Luo
CVPR 2021

ArtFlow is a universal style transfer method that consists of reversible neural flows and an unbiased feature transfer module. ArtFlow adopts a projection-transfer-reversion scheme instead of the encoder-transfer-decoder to avoid the content leak issue of existing style transfer methods and consequently achieves unbiased style transfer in continuous style transfer.

Style Transfer Examples

Style Transfer Examples

Artistic Portrait Style Transfer Examples

We also train a model with the FFHQ dataset as the content and Metfaces as the style to convert a portrait photo into an artwork.

Portrait Style Transfer

Content Leak Phenomenon

When we continuously perform style transfer with a style transfer algorithm, the produced result will gradually lose the detail of the content image. The code in this repository solves this problem.

Content Leak Phenomenons

Dependencies

  • Python=3.6
  • PyTorch=1.8.1
  • CUDA=10.2
  • cuDNN=7.6
  • Scipy=1.5.2

Optionally, if you are a conda user, you can execute the following command in the directory of this repository to create a new environment with all dependencies installed.

conda env create -f environment.yaml

Pretrained Models

If you want to use pretrained models to perform style transfer, please download the pre-trained models in Google Drive and put the downloaded experiments directory under the root of this repository. Then execute the following command in the root of the repository.

Style Transfer

The command with the default settings is:

CUDA_VISIBLE_DEVICES=0 python3 -u test.py --content_dir data/content --style_dir data/style --size 256 --n_flow 8 --n_block 2 --operator adain --decoder experiments/ArtFlow-AdaIN/glow.pth --output output_ArtFlow-AdaIN
  • content_dir: path for the content images. Default is data/content.
  • style_dir: path for the style images. Default is data/style.
  • size: image size for style transfer. Default is 256.
  • n_flow: number of the flow module used per block in the backbone network. Default is 8.
  • n_block: number of the block used in the backbone network. Default is 2.
  • operator: style transfer module. Options: [adain, wct, decorator].
  • decoder: path for the pre-trained model, if you let the --operator wct, then you should load the pre-trained model with --decoder experiments/ArtFlow-WCT/glow.pth. Otherwise, if you use AdaIN, you should set --decoder experiments/ArtFlow-AdaIN/glow.pth. If you want to use this code for portrait style transfer, please set --operator adain and --decoder experiments/ArtFlow-AdaIN-Portrait/glow.pth.
  • output: path of the output directory. This code will produce a style transferred image for every content-style combination in your designated directories.

Continuous Style Transfer

We provide a script to make style transfer with a content and a series of style images to demonstrate that our code can avoid the content leak issue. The command with the default settings is:

CUDA_VISIBLE_DEVICES=0 python3 continuous_transfer.py --content_dir data/content --style_dir data/style --size 256 --n_flow 8 --n_block 2 --operator adain --decoder experiments/ArtFlow-AdaIN/glow.pth --output output_ArtFlow-AdaIN

All parameters are the same as the style transfer part above.

Testing

To test the style transfer performance of the pre-trained model with the given content and style images under data directory. Please run the following commands:

ArtFlow + AdaIN

bash test_adain.sh

The style transfer results will be saved in output_ArtFlow-AdaIN.

ArtFlow + WCT

bash test_wct.sh

The style transfer results will be saved in output_ArtFlow-WCT.

Training

To train ArtFlow by yourself. Please firstly download the Imagenet pre-trained VGG19 model from Google Drive and put the downloaded models directory under the root of the repository. Then run the following commands.

CUDA_VISIBLE_DEVICES=0,1 python3 -u train.py --content_dir $training_content_dir --style_dir $training_style_dir --n_flow 8 --n_block 2 --operator adain --save_dir $param_save_dir --batch_size 4
  • content_dir: path for the training content images.
  • style_dir: path for the training style images.
  • n_flow: number of the flow module used per block in the backbone network. Default is 8.
  • n_block: number of the block used in the backbone network. Default is 2.
  • operator: style transfer module. Options: [adain, wct, decorator].
  • save_dir: path for saving the trained model.

The datasets we used for training in our experiments are as follows:

Model Content Style
General MS_COCO WikiArt
Portrait FFHQ Metfaces

If you want to reproduce the model in our experiments. Here are two bash scripts with our settings:

bash train_adain.sh
bash train_wct.sh

Please note that you may need to change the path of the train content and style datasets in the above two bash scripts.

Citation

@inproceedings{artflow2021,
 title={ArtFlow: Unbiased image style transfer via reversible neural flows},
 author={An, Jie and Huang, Siyu and Song, Yibing and Dou, Dejing and Liu, Wei and Luo, Jiebo},
 booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
 year={2021}
}

Acknowledgement

We thank the great work glow-pytorch, AdaIN and WCT as we benefit a lot from their codes and papers.

Contact

If you have any questions, please do not hesitate to contact [email protected] and [email protected].

Owner
writing toy code...
This project aims to explore the deployment of Swin-Transformer based on TensorRT, including the test results of FP16 and INT8.

Swin Transformer This project aims to explore the deployment of SwinTransformer based on TensorRT, including the test results of FP16 and INT8. Introd

maggiez 87 Dec 21, 2022
Official code for our EMNLP2021 Outstanding Paper MindCraft: Theory of Mind Modeling for Situated Dialogue in Collaborative Tasks

MindCraft Authors: Cristian-Paul Bara*, Sky CH-Wang*, Joyce Chai This is the official code repository for the paper (arXiv link): Cristian-Paul Bara,

Situated Language and Embodied Dialogue (SLED) Research Group 14 Dec 29, 2022
A fast model to compute optical flow between two input images.

DCVNet: Dilated Cost Volumes for Fast Optical Flow This repository contains our implementation of the paper: @InProceedings{jiang2021dcvnet, title={

Huaizu Jiang 8 Sep 27, 2021
Add gui for YoloV5 using PyQt5

HEAD 更新2021.08.16 **添加图片和视频保存功能: 1.图片和视频按照当前系统时间进行命名 2.各自检测结果存放入output文件夹 3.摄像头检测的默认设备序号更改为0,减少调试报错 温馨提示: 1.项目放置在全英文路径下,防止项目报错 2.默认使用cpu进行检测,自

Ruihao Wang 65 Dec 27, 2022
This package proposes simplified exporting pytorch models to ONNX and TensorRT, and also gives some base interface for model inference.

PyTorch Infer Utils This package proposes simplified exporting pytorch models to ONNX and TensorRT, and also gives some base interface for model infer

Alex Gorodnitskiy 11 Mar 20, 2022
LogAvgExp - Pytorch Implementation of LogAvgExp

LogAvgExp - Pytorch Implementation of LogAvgExp for Pytorch Install $ pip instal

Phil Wang 31 Oct 14, 2022
MetaBalance: Improving Multi-Task Recommendations via Adapting Gradient Magnitudes of Auxiliary Tasks

MetaBalance: Improving Multi-Task Recommendations via Adapting Gradient Magnitudes of Auxiliary Tasks Introduction This repo contains the pytorch impl

Meta Research 38 Oct 10, 2022
A code generator from ONNX to PyTorch code

onnx-pytorch Generating pytorch code from ONNX. Currently support onnx==1.9.0 and torch==1.8.1. Installation From PyPI pip install onnx-pytorch From

Wenhao Hu 94 Jan 06, 2023
Taming Transformers for High-Resolution Image Synthesis

Taming Transformers for High-Resolution Image Synthesis CVPR 2021 (Oral) Taming Transformers for High-Resolution Image Synthesis Patrick Esser*, Robin

CompVis Heidelberg 3.5k Jan 03, 2023
ESPNet: Efficient Spatial Pyramid of Dilated Convolutions for Semantic Segmentation

ESPNet: Efficient Spatial Pyramid of Dilated Convolutions for Semantic Segmentation This repository contains the source code of our paper, ESPNet (acc

Sachin Mehta 515 Dec 13, 2022
[NeurIPS 2021] “Improving Contrastive Learning on Imbalanced Data via Open-World Sampling”,

Improving Contrastive Learning on Imbalanced Data via Open-World Sampling Introduction Contrastive learning approaches have achieved great success in

VITA 24 Dec 17, 2022
Unofficial PyTorch implementation of Fastformer based on paper "Fastformer: Additive Attention Can Be All You Need"."

Fastformer-PyTorch Unofficial PyTorch implementation of Fastformer based on paper Fastformer: Additive Attention Can Be All You Need. Usage : import t

Hong-Jia Chen 126 Dec 06, 2022
Distributing reference energies for SMIRNOFF implementations

Warning: This code is currently experimental and under active development. Is it not yet suitable for distribution or use as reference implementation.

Open Force Field Initiative 1 Dec 07, 2021
Official code of "R2RNet: Low-light Image Enhancement via Real-low to Real-normal Network."

R2RNet Official code of "R2RNet: Low-light Image Enhancement via Real-low to Real-normal Network." Jiang Hai, Zhu Xuan, Ren Yang, Yutong Hao, Fengzhu

77 Dec 24, 2022
converts nominal survey data into a numerical value based on a dictionary lookup.

SWAP RATE Converts nominal survey data into a numerical values based on a dictionary lookup. It allows the user to switch nominal scale data from text

Jake Rhodes 1 Jan 18, 2022
Experimental code for paper: Generative Adversarial Networks as Variational Training of Energy Based Models

Experimental code for paper: Generative Adversarial Networks as Variational Training of Energy Based Models, under review at ICLR 2017 requirements: T

Shuangfei Zhai 18 Mar 05, 2022
An executor that performs image segmentation on fashion items

ClothingSegmenter U2NET fashion image/clothing segmenter based on https://github.com/levindabhi/cloth-segmentation Overview The ClothingSegmenter exec

Jina AI 5 Mar 30, 2022
Picasso: A CUDA-based Library for Deep Learning over 3D Meshes

The Picasso Library is intended for complex real-world applications with large-scale surfaces, while it also performs impressively on the small-scale applications over synthetic shape manifolds. We h

97 Dec 01, 2022
Distance-Ratio-Based Formulation for Metric Learning

Distance-Ratio-Based Formulation for Metric Learning Environment Python3 Pytorch (http://pytorch.org/) (version 1.6.0+cu101) json tqdm Preparing datas

Hyeongji Kim 1 Dec 07, 2022
A PyTorch implementation of PointRend: Image Segmentation as Rendering

PointRend A PyTorch implementation of PointRend: Image Segmentation as Rendering [arxiv] [Official Implementation: Detectron2] This repo for Only Sema

AhnDW 336 Dec 26, 2022