Official PyTorch implementation of "ArtFlow: Unbiased Image Style Transfer via Reversible Neural Flows"

Related tags

Deep LearningArtFlow
Overview

ArtFlow

Official PyTorch implementation of the paper:

ArtFlow: Unbiased Image Style Transfer via Reversible Neural Flows
Jie An*, Siyu Huang*, Yibing Song, Dejing Dou, Wei Liu and Jiebo Luo
CVPR 2021

ArtFlow is a universal style transfer method that consists of reversible neural flows and an unbiased feature transfer module. ArtFlow adopts a projection-transfer-reversion scheme instead of the encoder-transfer-decoder to avoid the content leak issue of existing style transfer methods and consequently achieves unbiased style transfer in continuous style transfer.

Style Transfer Examples

Style Transfer Examples

Artistic Portrait Style Transfer Examples

We also train a model with the FFHQ dataset as the content and Metfaces as the style to convert a portrait photo into an artwork.

Portrait Style Transfer

Content Leak Phenomenon

When we continuously perform style transfer with a style transfer algorithm, the produced result will gradually lose the detail of the content image. The code in this repository solves this problem.

Content Leak Phenomenons

Dependencies

  • Python=3.6
  • PyTorch=1.8.1
  • CUDA=10.2
  • cuDNN=7.6
  • Scipy=1.5.2

Optionally, if you are a conda user, you can execute the following command in the directory of this repository to create a new environment with all dependencies installed.

conda env create -f environment.yaml

Pretrained Models

If you want to use pretrained models to perform style transfer, please download the pre-trained models in Google Drive and put the downloaded experiments directory under the root of this repository. Then execute the following command in the root of the repository.

Style Transfer

The command with the default settings is:

CUDA_VISIBLE_DEVICES=0 python3 -u test.py --content_dir data/content --style_dir data/style --size 256 --n_flow 8 --n_block 2 --operator adain --decoder experiments/ArtFlow-AdaIN/glow.pth --output output_ArtFlow-AdaIN
  • content_dir: path for the content images. Default is data/content.
  • style_dir: path for the style images. Default is data/style.
  • size: image size for style transfer. Default is 256.
  • n_flow: number of the flow module used per block in the backbone network. Default is 8.
  • n_block: number of the block used in the backbone network. Default is 2.
  • operator: style transfer module. Options: [adain, wct, decorator].
  • decoder: path for the pre-trained model, if you let the --operator wct, then you should load the pre-trained model with --decoder experiments/ArtFlow-WCT/glow.pth. Otherwise, if you use AdaIN, you should set --decoder experiments/ArtFlow-AdaIN/glow.pth. If you want to use this code for portrait style transfer, please set --operator adain and --decoder experiments/ArtFlow-AdaIN-Portrait/glow.pth.
  • output: path of the output directory. This code will produce a style transferred image for every content-style combination in your designated directories.

Continuous Style Transfer

We provide a script to make style transfer with a content and a series of style images to demonstrate that our code can avoid the content leak issue. The command with the default settings is:

CUDA_VISIBLE_DEVICES=0 python3 continuous_transfer.py --content_dir data/content --style_dir data/style --size 256 --n_flow 8 --n_block 2 --operator adain --decoder experiments/ArtFlow-AdaIN/glow.pth --output output_ArtFlow-AdaIN

All parameters are the same as the style transfer part above.

Testing

To test the style transfer performance of the pre-trained model with the given content and style images under data directory. Please run the following commands:

ArtFlow + AdaIN

bash test_adain.sh

The style transfer results will be saved in output_ArtFlow-AdaIN.

ArtFlow + WCT

bash test_wct.sh

The style transfer results will be saved in output_ArtFlow-WCT.

Training

To train ArtFlow by yourself. Please firstly download the Imagenet pre-trained VGG19 model from Google Drive and put the downloaded models directory under the root of the repository. Then run the following commands.

CUDA_VISIBLE_DEVICES=0,1 python3 -u train.py --content_dir $training_content_dir --style_dir $training_style_dir --n_flow 8 --n_block 2 --operator adain --save_dir $param_save_dir --batch_size 4
  • content_dir: path for the training content images.
  • style_dir: path for the training style images.
  • n_flow: number of the flow module used per block in the backbone network. Default is 8.
  • n_block: number of the block used in the backbone network. Default is 2.
  • operator: style transfer module. Options: [adain, wct, decorator].
  • save_dir: path for saving the trained model.

The datasets we used for training in our experiments are as follows:

Model Content Style
General MS_COCO WikiArt
Portrait FFHQ Metfaces

If you want to reproduce the model in our experiments. Here are two bash scripts with our settings:

bash train_adain.sh
bash train_wct.sh

Please note that you may need to change the path of the train content and style datasets in the above two bash scripts.

Citation

@inproceedings{artflow2021,
 title={ArtFlow: Unbiased image style transfer via reversible neural flows},
 author={An, Jie and Huang, Siyu and Song, Yibing and Dou, Dejing and Liu, Wei and Luo, Jiebo},
 booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
 year={2021}
}

Acknowledgement

We thank the great work glow-pytorch, AdaIN and WCT as we benefit a lot from their codes and papers.

Contact

If you have any questions, please do not hesitate to contact [email protected] and [email protected].

Owner
writing toy code...
A simple interface for editing natural photos with generative neural networks.

Neural Photo Editor A simple interface for editing natural photos with generative neural networks. This repository contains code for the paper "Neural

Andy Brock 2.1k Dec 29, 2022
A comprehensive list of published machine learning applications to cosmology

ml-in-cosmology This github attempts to maintain a comprehensive list of published machine learning applications to cosmology, organized by subject ma

George Stein 290 Dec 29, 2022
This is code of book "Learn Deep Learning with PyTorch"

深度学习入门之PyTorch Learn Deep Learning with PyTorch 非常感谢您能够购买此书,这个github repository包含有深度学习入门之PyTorch的实例代码。由于本人水平有限,在写此书的时候参考了一些网上的资料,在这里对他们表示敬意。由于深度学习的技术在

Xingyu Liao 2.5k Jan 04, 2023
PyTorch implementation for the Neuro-Symbolic Sudoku Solver leveraging the power of Neural Logic Machines (NLM)

Neuro-Symbolic Sudoku Solver PyTorch implementation for the Neuro-Symbolic Sudoku Solver leveraging the power of Neural Logic Machines (NLM). Please n

Ashutosh Hathidara 60 Dec 10, 2022
Tensorflow port of a full NetVLAD network

netvlad_tf The main intention of this repo is deployment of a full NetVLAD network, which was originally implemented in Matlab, in Python. We provide

Robotics and Perception Group 225 Nov 08, 2022
Supercharging Imbalanced Data Learning WithCausal Representation Transfer

ECRT: Energy-based Causal Representation Transfer Code for Supercharging Imbalanced Data Learning With Energy-basedContrastive Representation Transfer

Zidi Xiu 11 May 02, 2022
Thermal Control of Laser Powder Bed Fusion using Deep Reinforcement Learning

This repository is the implementation of the paper "Thermal Control of Laser Powder Bed Fusion Using Deep Reinforcement Learning", linked here. The project makes use of the Deep Reinforcement Library

BaratiLab 11 Dec 27, 2022
[CVPR2021 Oral] FFB6D: A Full Flow Bidirectional Fusion Network for 6D Pose Estimation.

FFB6D This is the official source code for the CVPR2021 Oral work, FFB6D: A Full Flow Biderectional Fusion Network for 6D Pose Estimation. (Arxiv) Tab

Yisheng (Ethan) He 201 Dec 28, 2022
[ICCV2021] IICNet: A Generic Framework for Reversible Image Conversion

IICNet - Invertible Image Conversion Net Official PyTorch Implementation for IICNet: A Generic Framework for Reversible Image Conversion (ICCV2021). D

felixcheng97 55 Dec 06, 2022
[NeurIPS 2021]: Are Transformers More Robust Than CNNs? (Pytorch implementation & checkpoints)

Are Transformers More Robust Than CNNs? Pytorch implementation for NeurIPS 2021 Paper: Are Transformers More Robust Than CNNs? Our implementation is b

Yutong Bai 145 Dec 01, 2022
PyTorch implementations of the paper: "DR.VIC: Decomposition and Reasoning for Video Individual Counting, CVPR, 2022"

DRNet for Video Indvidual Counting (CVPR 2022) Introduction This is the official PyTorch implementation of paper: DR.VIC: Decomposition and Reasoning

tao han 35 Nov 22, 2022
A PyTorch implementation of "Graph Classification Using Structural Attention" (KDD 2018).

GAM ⠀⠀ A PyTorch implementation of Graph Classification Using Structural Attention (KDD 2018). Abstract Graph classification is a problem with practic

Benedek Rozemberczki 259 Dec 05, 2022
mbrl-lib is a toolbox for facilitating development of Model-Based Reinforcement Learning algorithms.

mbrl-lib is a toolbox for facilitating development of Model-Based Reinforcement Learning algorithms. It provides easily interchangeable modeling and planning components, and a set of utility function

Facebook Research 724 Jan 04, 2023
Multiview Neural Surface Reconstruction by Disentangling Geometry and Appearance

Multiview Neural Surface Reconstruction by Disentangling Geometry and Appearance Project Page | Paper | Data This repository contains an implementatio

Lior Yariv 521 Dec 30, 2022
A Pytorch Implementation of Domain adaptation of object detector using scissor-like networks

A Pytorch Implementation of Domain adaptation of object detector using scissor-like networks Please follow Faster R-CNN and DAF to complete the enviro

2 Oct 07, 2022
Stochastic gradient descent with model building

Stochastic Model Building (SMB) This repository includes a new fast and robust stochastic optimization algorithm for training deep learning models. Th

S. Ilker Birbil 22 Jan 19, 2022
text_recognition_toolbox: The reimplementation of a series of classical scene text recognition papers with Pytorch in a uniform way.

text recognition toolbox 1. 项目介绍 该项目是基于pytorch深度学习框架,以统一的改写方式实现了以下6篇经典的文字识别论文,论文的详情如下。该项目会持续进行更新,欢迎大家提出问题以及对代码进行贡献。 模型 论文标题 发表年份 模型方法划分 CRNN 《An End-t

168 Dec 24, 2022
Alphabetical Letter Recognition

BayeesNetworks-Image-Classification Alphabetical Letter Recognition In these demo we are using "Bayees Networks" Our database is composed by Learning

Mohammed Firass 4 Nov 30, 2021
This project uses Template Matching technique for object detecting by detection of template image over base image.

Object Detection Project Using OpenCV This project uses Template Matching technique for object detecting by detection the template image over base ima

Pratham Bhatnagar 7 May 29, 2022
A really easy-to-use and powerful sudoku solver.

SodukuSolver This is a really useful sudoku solver with a Qt gui. USAGE Enter the numbers in and click "RUN"! If you don't want to wait, simply press

Ujhhgtg Teams 11 Jun 02, 2022