A hybrid SOTA solution of LiDAR panoptic segmentation with C++ implementations of point cloud clustering algorithms. ICCV21, Workshop on Traditional Computer Vision in the Age of Deep Learning

Overview

ICCVW21-TradiCV-Survey-of-LiDAR-Cluster

Motivation

In contrast to popular end-to-end deep learning LiDAR panoptic segmentation solutions, we propose a hybrid method with an existing semantic segmentation network to extract semantic information and a traditional LiDAR point cloud cluster algorithm to split each instance object. We argue geometry-based traditional clustering algorithms are worth being considered by showing a state-of-the-art performance among all published end-to-end deep learning solutions on the panoptic segmentation leaderboard of the SemanticKITTI dataset. To our best knowledge, we are the first to attempt the point cloud panoptic segmentation with clustering algorithms. Therefore, instead of working on new models, we give a comprehensive technical survey in this paper by implementing four typical cluster methods and report their performances on the benchmark. Those four cluster methods are the most representative ones with real-time running speed. They are implemented with C++ in this paper and then wrapped as a python function for seamless integration with the existing deep learning frameworks.


Figure






















Dataset Organization

ICCVW21-LiDAR-Panoptic-Segmentation-TradiCV-Survey-of-Point-Cloud-Cluster
├──  Dataset
├        ├── semanticKITTI                 
├            ├── semantic-kitti-api-master         
├            ├── semantic-kitti.yaml
├            ├── data_odometry_velodyne ── dataset ── sequences ── train, val, test         # each folder contains the corresponding sequence folders 00,01...
├            ├── data_odometry_labels ── dataset ── sequences ── train, val, test           # each folder contains the corresponding sequence folders 00,01...
├            └── data_odometry_calib    
├──  method_predictions ── sequences

How to run

```
docker pull pytorch/pytorch:1.7.1-cuda11.0-cudnn8-runtime 
```

Install dependency packages:

```
bash install_dependency.sh
```

Compile specific clusters

```
cd PC_cluster
cd ScanLineRun_cluster/Euclidean_cluster/depth_cluster/SuperVoxel_cluster
bash prepare_packages.sh/prepare_pybind.sh
bash build.sh
```

Note, prepare_packages.sh may redundantly install packages as clusters are supposed to be used independently.

One can download the predicted validation results of Cylinder3D from here: https://drive.google.com/file/d/1QkV8zmRaOAgAZse5CGtlmijcLJVnh7XP/view?usp=sharing

We get the prediction of validation 08 sequence by using the provided checkpoint of Cylinder3D. Thanks for sharing the code!

After downloading, unzip the 08 file, put it inside ./method_predictions/sequences/

It looks like ./method_predictions/sequences/08/predictions/*.label

Run the cluster algorithm

```
python semantic_then_instance_post_inferece.py
```

It should keep updating the visualization figure output_example.png, and overwrite predicted labels in ./method_predictions/sequences/08/predictions/

One can unzip 08 again if wants to run the cluster algorithm again.

Some parameters can be tuned in args parser.

After generating the predicted panoptic label on validation set, one can simply run:

```
bash evaluation_panoptic.sh
```

Some changes of local path may need to be done. Just follow the error to change them, should be easy.

The reported numbers should be exactly the same as the paper since traditional methods have no randomness.

Publication

Please cite the paper if you use this code:

@inproceedings{zhao2021technical,
  title={A Technical Survey and Evaluation of Traditional Point Cloud Clustering Methods for LiDAR Panoptic Segmentation},
  author={Zhao, Yiming and Zhang, Xiao and Huang, Xinming},
  booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
  pages={2464--2473},
  year={2021}
}


Owner
YimingZhao
Job seeking at Shanghai. I'm a Ph.D. student at Worcester Polytechnic Institute, working on deep learning, autonomous driving, and general robotic vision.
YimingZhao
noisy labels; missing labels; semi-supervised learning; entropy; uncertainty; robustness and generalisation.

ProSelfLC: CVPR 2021 ProSelfLC: Progressive Self Label Correction for Training Robust Deep Neural Networks For any specific discussion or potential fu

amos_xwang 57 Dec 04, 2022
Non-Metric Space Library (NMSLIB): An efficient similarity search library and a toolkit for evaluation of k-NN methods for generic non-metric spaces.

Non-Metric Space Library (NMSLIB) Important Notes NMSLIB is generic but fast, see the results of ANN benchmarks. A standalone implementation of our fa

2.9k Jan 04, 2023
Official Implementation of "Tracking Grow-Finish Pigs Across Large Pens Using Multiple Cameras"

Multi Camera Pig Tracking Official Implementation of Tracking Grow-Finish Pigs Across Large Pens Using Multiple Cameras CVPR2021 CV4Animals Workshop P

44 Jan 06, 2023
Image Data Augmentation in Keras

Image data augmentation is a technique that can be used to artificially expand the size of a training dataset by creating modified versions of images in the dataset.

Grace Ugochi Nneji 3 Feb 15, 2022
Collaborative forensic timeline analysis

Timesketch Table of Contents About Timesketch Getting started Community Contributing About Timesketch Timesketch is an open-source tool for collaborat

Google 2.1k Dec 28, 2022
A Keras implementation of CapsNet in the paper: Sara Sabour, Nicholas Frosst, Geoffrey E Hinton. Dynamic Routing Between Capsules

NOTE This implementation is fork of https://github.com/XifengGuo/CapsNet-Keras , applied to IMDB texts reviews dataset. CapsNet-Keras A Keras implemen

Lauro Moraes 5 Oct 23, 2022
The goal of the exercises below is to evaluate the candidate knowledge and problem solving expertise regarding the main development focuses for the iFood ML Platform team: MLOps and Feature Store development.

The goal of the exercises below is to evaluate the candidate knowledge and problem solving expertise regarding the main development focuses for the iFood ML Platform team: MLOps and Feature Store dev

George Rocha 0 Feb 03, 2022
E2C implementation in PyTorch

Embed to Control implementation in PyTorch Paper can be found here: https://arxiv.org/abs/1506.07365 You will need a patched version of OpenAI Gym in

Yicheng Luo 42 Dec 12, 2022
OpenDILab Multi-Agent Environment

Go-Bigger: Multi-Agent Decision Intelligence Environment GoBigger Doc (中文版) Ongoing 2021.11.13 We are holding a competition —— Go-Bigger: Multi-Agent

OpenDILab 441 Jan 05, 2023
Official implementation of the ICCV 2021 paper "Joint Inductive and Transductive Learning for Video Object Segmentation"

JOINT This is the official implementation of Joint Inductive and Transductive learning for Video Object Segmentation, to appear in ICCV 2021. @inproce

Yunyao 35 Oct 16, 2022
The code for our NeurIPS 2021 paper "Kernelized Heterogeneous Risk Minimization".

Kernelized-HRM Jiashuo Liu, Zheyuan Hu The code for our NeurIPS 2021 paper "Kernelized Heterogeneous Risk Minimization"[1]. This repo contains the cod

Liu Jiashuo 8 Nov 20, 2022
YOLOPのPythonでのONNX推論サンプル

YOLOP-ONNX-Video-Inference-Sample YOLOPのPythonでのONNX推論サンプルです。 ONNXモデルは、hustvl/YOLOP/weights を使用しています。 Requirement OpenCV 3.4.2 or later onnxruntime 1.

KazuhitoTakahashi 8 Sep 05, 2022
ManipulaTHOR, a framework that facilitates visual manipulation of objects using a robotic arm

ManipulaTHOR: A Framework for Visual Object Manipulation Kiana Ehsani, Winson Han, Alvaro Herrasti, Eli VanderBilt, Luca Weihs, Eric Kolve, Aniruddha

AI2 65 Dec 30, 2022
ICCV2021, Tokens-to-Token ViT: Training Vision Transformers from Scratch on ImageNet

Tokens-to-Token ViT: Training Vision Transformers from Scratch on ImageNet, ICCV 2021 Update: 2021/03/11: update our new results. Now our T2T-ViT-14 w

YITUTech 1k Dec 31, 2022
COCO Style Dataset Generator GUI

A simple GUI-based COCO-style JSON Polygon masks' annotation tool to facilitate quick and efficient crowd-sourced generation of annotation masks and bounding boxes. Optionally, one could choose to us

Hans Krupakar 142 Dec 09, 2022
basic tutorial on pytorch

Quick Tutorial on PyTorch PyTorch Basics Linear Regression Logistic Regression Artificial Neural Networks Convolutional Neural Networks Recurrent Neur

7 Sep 15, 2022
Molecular Sets (MOSES): A benchmarking platform for molecular generation models

Molecular Sets (MOSES): A benchmarking platform for molecular generation models Deep generative models are rapidly becoming popular for the discovery

Neelesh C A 3 Oct 14, 2022
[AI6122] Text Data Management & Processing

[AI6122] Text Data Management & Processing is an elective course of MSAI, SCSE, NTU, Singapore. The repository corresponds to the AI6122 of Semester 1, AY2021-2022, starting from 08/2021. The instruc

HT. Li 1 Jan 17, 2022
Running Google MoveNet Multipose Tracking models on OpenVINO.

MoveNet MultiPose Tracking on OpenVINO

60 Nov 17, 2022
SAN for Product Attributes Prediction

SAN Heterogeneous Star Graph Attention Network for Product Attributes Prediction This repository contains the official PyTorch implementation for ADVI

Xuejiao Zhao 9 Dec 12, 2022