An extremely simple, intuitive, hardware-friendly, and well-performing network structure for LiDAR semantic segmentation on 2D range image. IROS21

Overview

FIDNet_SemanticKITTI

Motivation

Implementing complicated network modules with only one or two points improvement on hardware is tedious. So here we propose a LiDAR semantic segmentation pipeline on 2D range image just with the most commonly used operators: convolutional operator and bilinear upsample operator. The designed network structure is simple but efficient. We make it achieve the comparable performance with the state-of-the-art projection-based solutions. The training can be done on a single RTX 2080 Ti GPU.

The network structure:
Figure








A demo video of our IROS paper on test set:
Figure











Dataset Organization

IROS21-FIDNet-SemanticKITTI
├──  Dataset
├        ├── semanticKITTI                 
├            ├── semantic-kitti-api-master         
├            ├── semantic-kitti.yaml
├            ├── data_odometry_velodyne ── dataset ── sequences ── train, val, test         # each folder contains the corresponding sequence folders 00,01...
├            ├── data_odometry_labels ── dataset ── sequences ── train, val, test           # each folder contains the corresponding sequence folders 00,01...
├            └── data_odometry_calib        
├──  save_semantic ── ResNet34_point_2048_64_BNTrue_remissionTrue_rangeTrue_normalTrue_rangemaskTrue_2_1.0_3.0_lr1_top_k0.15

How to run

```
docker pull pytorch/pytorch:1.7.1-cuda11.0-cudnn8-runtime
```

Install dependency packages:

```
bash install_dependency.sh
```

For training inside the docker:

```
python semantic_main.py
```

For evaluate inside the docker:

```
python semantic_inference.py
```

Generate the test predictions:

```
python semantic_test.py
```

Pretrained weight

Download link: https://drive.google.com/drive/folders/1Zv2i-kYcLH7Wmqnh4nTY2KbE_ZyGTmyA?usp=sharing

After downloading, move the file 25 into

./save_semantic/ResNet34_point_2048_64_BNTrue_remissionTrue_rangeTrue_normalTrue_rangemaskTrue_2_1.0_3.0_lr1_top_k0.15/

Then directly run the evaluate python script should can work.

After generating the predicted label on validation set, one can simply run:

```
bash evaluation.sh
```

Some changes of local path may need to be done. Just follow the error to change them, should be easy.

This checkpoint achieves 58.8 mIOU on the validation set.

Train from the scatch

The default setting should can give a good result. The performance may has one or two point difference due to the randomness. One can explore more based on our pipeline.

Publication

Please cite the paper if you use this code:

@article{zhao2021fidnet,
  title={FIDNet: LiDAR Point Cloud Semantic Segmentation with Fully Interpolation Decoding},
  author={Zhao, Yiming and Bai, Lin and Huang, Xinming},
  journal={arXiv preprint arXiv:2109.03787},
  year={2021}
}


Owner
YimingZhao
Job seeking at Shanghai. I'm a Ph.D. student at Worcester Polytechnic Institute, working on deep learning, autonomous driving, and general robotic vision.
YimingZhao
Predicting lncRNA–protein interactions based on graph autoencoders and collaborative training

Predicting lncRNA–protein interactions based on graph autoencoders and collaborative training Code for our paper "Predicting lncRNA–protein interactio

zhanglabNKU 1 Nov 29, 2022
working repo for my xumx-sliCQ submissions to the ISMIR 2021 MDX

Music Demixing Challenge - xumx-sliCQ This repository is the GitHub mirror of my working submission repository for the AICrowd ISMIR 2021 Music Demixi

4 Aug 25, 2021
Megaverse is a new 3D simulation platform for reinforcement learning and embodied AI research

Megaverse Megaverse is a new 3D simulation platform for reinforcement learning and embodied AI research. The efficient design of the engine enables ph

Aleksei Petrenko 191 Dec 23, 2022
Exploring Visual Engagement Signals for Representation Learning

Exploring Visual Engagement Signals for Representation Learning Menglin Jia, Zuxuan Wu, Austin Reiter, Claire Cardie, Serge Belongie and Ser-Nam Lim C

Menglin Jia 9 Jul 23, 2022
A different spin on dataclasses.

dataklasses Dataklasses is a library that allows you to quickly define data classes using Python type hints. Here's an example of how you use it: from

David Beazley 752 Nov 18, 2022
Automatic differentiation with weighted finite-state transducers.

GTN: Automatic Differentiation with WFSTs Quickstart | Installation | Documentation What is GTN? GTN is a framework for automatic differentiation with

100 Dec 29, 2022
Spatio-Temporal Entropy Model (STEM) for end-to-end leaned video compression.

Spatio-Temporal Entropy Model A Pytorch Reproduction of Spatio-Temporal Entropy Model (STEM) for end-to-end leaned video compression. More details can

16 Nov 28, 2022
This repository contains several image-to-image translation models, whcih were tested for RGB to NIR image generation. The models are Pix2Pix, Pix2PixHD, CycleGAN and PointWise.

RGB2NIR_Experimental This repository contains several image-to-image translation models, whcih were tested for RGB to NIR image generation. The models

5 Jan 04, 2023
Simulating Sycamore quantum circuits classically using tensor network algorithm.

Simulating the Sycamore quantum supremacy circuit This repo contains data we have obtained in simulating the Sycamore quantum supremacy circuits with

Feng Pan 46 Nov 17, 2022
Generative Art Using Neural Visual Grammars and Dual Encoders

Generative Art Using Neural Visual Grammars and Dual Encoders Arnheim 1 The original algorithm from the paper Generative Art Using Neural Visual Gramm

DeepMind 231 Jan 05, 2023
An e-commerce company wants to segment its customers and determine marketing strategies according to these segments.

customer_segmentation_with_rfm Business Problem : An e-commerce company wants to

Buse Yıldırım 3 Jan 06, 2022
GANmouflage: 3D Object Nondetection with Texture Fields

GANmouflage: 3D Object Nondetection with Texture Fields Rui Guo1 Jasmine Collins

29 Aug 10, 2022
lightweight python wrapper for vowpal wabbit

vowpal_porpoise Lightweight python wrapper for vowpal_wabbit. Why: Scalable, blazingly fast machine learning. Install Install vowpal_wabbit. Clone and

Joseph Reisinger 163 Nov 24, 2022
Multi-Anchor Active Domain Adaptation for Semantic Segmentation (ICCV 2021 Oral)

Multi-Anchor Active Domain Adaptation for Semantic Segmentation Munan Ning*, Donghuan Lu*, Dong Wei†, Cheng Bian, Chenglang Yuan, Shuang Yu, Kai Ma, Y

Munan Ning 36 Dec 07, 2022
Code for reproducing our analysis in the paper titled: Image Cropping on Twitter: Fairness Metrics, their Limitations, and the Importance of Representation, Design, and Agency

Image Crop Analysis This is a repo for the code used for reproducing our Image Crop Analysis paper as shared on our blog post. If you plan to use this

Twitter Research 239 Jan 02, 2023
[BMVC'21] Official PyTorch Implementation of Grounded Situation Recognition with Transformers

Grounded Situation Recognition with Transformers Paper | Model Checkpoint This is the official PyTorch implementation of Grounded Situation Recognitio

Junhyeong Cho 18 Jul 19, 2022
Classical OCR DCNN reproduction based on PaddlePaddle framework.

Paddle-SVHN Classical OCR DCNN reproduction based on PaddlePaddle framework. This project reproduces Multi-digit Number Recognition from Street View I

1 Nov 12, 2021
JASS: Japanese-specific Sequence to Sequence Pre-training for Neural Machine Translation

JASS: Japanese-specific Sequence to Sequence Pre-training for Neural Machine Translation This the repository for this paper. Find extensions of this w

Zhuoyuan Mao 14 Oct 26, 2022
PyBullet CartPole and Quadrotor environments—with CasADi symbolic a priori dynamics—for learning-based control and reinforcement learning

safe-control-gym Physics-based CartPole and Quadrotor Gym environments (using PyBullet) with symbolic a priori dynamics (using CasADi) for learning-ba

Dynamic Systems Lab 300 Dec 28, 2022
Automated Hyperparameter Optimization Competition

QQ浏览器2021AI算法大赛 - 自动超参数优化竞赛 ACM CIKM 2021 AnalyticCup 在信息流推荐业务场景中普遍存在模型或策略效果依赖于“超参数”的问题,而“超参数"的设定往往依赖人工经验调参,不仅效率低下维护成本高,而且难以实现更优效果。因此,本次赛题以超参数优化为主题,从真

20 Dec 09, 2021