A dead simple python wrapper for darknet that works with OpenCV 4.1, CUDA 10.1

Overview

What

Dead simple python wrapper for Yolo V3 using AlexyAB's darknet fork. Works with CUDA 10.1 and OpenCV 4.1 or later (I use OpenCV master as of Jun 23, 2019)

Why

  • OpenCV's DNN module, as of today, does not support NVIDIA GPUs. There is a GSOC WIP that will change this. Till then, this library is what I needed.

  • I used Alexy's fork because he keeps it more updated with required changes (like using std++-11 etc.).
    W

  • Other excellent libraries such as pyyolo, Yolo34Py did not work for me with CUDA 10.1 and OpenCV 4.1. They all had compiler issues

How to use this library

By dead simple, I mean dead simple.

  • This module doesn't bother cloning/building darknet. Build it whichever way you want, and simply make libdarknet.so accessible to this module.

  • Modify cfg/coco.data names= to point to where you have the labels (typically coco.names)

  • See example.py

Sample:

import simpleyolo.simpleYolo as yolo

configPath='./cfg/yolov3.cfg'
weightPath='./yolov3.weights'
metaPath='./cfg/coco.data'
imagePath='data/dog.jpg'

# initialize
m = yolo.SimpleYolo(configPath=configPath, 
                    weightPath=weightPath, 
                    metaPath=metaPath, 
                    darknetLib='./libdarknet_gpu.so', 
                    useGPU=True)
print ('detecting...')
detections = m.detect(imagePath)
print (detections)

When to use/not to use

  • Use this library if you want GPU support for YoloV3.
  • DON'T USE THIS LIBRARY if you want CPU support. It will work, but OpenCV's DNN module for YoloV3 is around 10x faster than using darknet directly. Really.
  • On CPU, Intel Xeon 32GB RAM, 4 core, 3.1GHz, OpenCV DNN YoloV3 with blas/atlas takes ~2-4s
  • On CPU, Intel Xeon 32GB RAM, 4 core, 3.1GHz, darkneti YoloV3 takes ~45s (gaah!)
  • BUT, on GPU, NVIDIA GeForce 1050 Ti, 4GB, same CPU, darknet YoloV3 takes 91ms (woot!)

If you really want to know how to get darknet working with OpenCV 4.1

Assuming you have built/installed CUDA/cuDNN and optionally OpenCV 4.1:

git clone https://github.com/AlexeyAB/darknet
cd darknet

Edit the Makefile, set:
GPU=1
CUDNN=1
LIBSO=1

If you want darknet to use OPENCV (not necessary), also set

OPENCV=1 

Notes:

  • You will make to change the Makefile to change pkg-config --libs opencv to pkg-config --libs opencv4 (2 instances). This will not be needed after Alexy fixes this issue

  • The above will only work if you previously compiled OpenCV 4+ with OPENCV_GENERATE_PKGCONFIG=ON and then copied the generated pc file like so: sudo cp unix-install/opencv4.pc /usr/lib/pkgconfig/

Pretty, please, how do we build OpenCV 4.1 with CUDA 10.1?

Assuming you have built/installed CUDA/cuDNN:

git clone https://github.com/opencv/opencv
git clone https://github.com/opencv/opencv_contrib
cd opencv
mkdir build

cmake -D CMAKE_BUILD_TYPE=RELEASE \
        -D CMAKE_INSTALL_PREFIX=/usr/local \
        -D PYTHON_DEFAULT_EXECUTABLE=$(which python3) \
        -D INSTALL_PYTHON_EXAMPLES=OFF \
        -D INSTALL_C_EXAMPLES=OFF \
        -D OPENCV_ENABLE_NONFREE=ON \
        -D OPENCV_EXTRA_MODULES_PATH=/home/pp/opencv_contrib/modules \
        -D BUILD_EXAMPLES=OFF \
        -D WITH_CUDA=ON \
        -D ENABLE_FAST_MATH=ON \
        -D CUDA_FAST_MATH=ON \
        -D WITH_CUBLAS=ON \
        -D WITH_OPENCL=ON \
        -D BUILD_opencv_cudacodec=OFF \
        -D BUILD_opencv_world=OFF \
        -D WITH_NVCUVID=OFF \
        -D WITH_OPENGL=ON \
        -D BUILD_opencv_python3=ON \
        -D OPENCV_GENERATE_PKGCONFIG=ON \
        ..
make -j$(nproc)
sudo make install

# don't forget this, for darknet and other libs to find opencv4 later
sudo cp unix-install/opencv4.pc /usr/lib/pkgconfig/

Pretty pretty please, how do I build CUDA 10.1 and nvidia drivers?

Maybe later.

Owner
Pliable Pixels
I code like a Kindergartner
Pliable Pixels
Visualizer using audio and semantic analysis to explore BigGAN (Brock et al., 2018) latent space.

BigGAN Audio Visualizer Description This visualizer explores BigGAN (Brock et al., 2018) latent space by using pitch/tempo of an audio file to generat

Rush Kapoor 2 Nov 21, 2022
Implementation of "Large Steps in Inverse Rendering of Geometry"

Large Steps in Inverse Rendering of Geometry ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia), December 2021. Baptiste Nicolet · Alec Jacob

RGL: Realistic Graphics Lab 274 Jan 06, 2023
This repository contains a PyTorch implementation of the paper Learning to Assimilate in Chaotic Dynamical Systems.

Amortized Assimilation This repository contains a PyTorch implementation of the paper Learning to Assimilate in Chaotic Dynamical Systems. Abstract: T

4 Aug 16, 2022
DeepGNN is a framework for training machine learning models on large scale graph data.

DeepGNN Overview DeepGNN is a framework for training machine learning models on large scale graph data. DeepGNN contains all the necessary features in

Microsoft 45 Jan 01, 2023
(ICONIP 2020) MobileHand: Real-time 3D Hand Shape and Pose Estimation from Color Image

MobileHand: Real-time 3D Hand Shape and Pose Estimation from Color Image This repo contains the source code for MobileHand, real-time estimation of 3D

90 Dec 12, 2022
Bayesian optimization in PyTorch

BoTorch is a library for Bayesian Optimization built on PyTorch. BoTorch is currently in beta and under active development! Why BoTorch ? BoTorch Prov

2.5k Dec 31, 2022
Generative Handwriting using LSTM Mixture Density Network with TensorFlow

Generative Handwriting Demo using TensorFlow An attempt to implement the random handwriting generation portion of Alex Graves' paper. See my blog post

hardmaru 686 Nov 24, 2022
Garbage classification using structure data.

垃圾分类模型使用说明 1.包含以下数据文件 文件 描述 data/MaterialMapping.csv 物体以及其归类的信息 data/TestRecords 光谱原始测试数据 CSV 文件 data/TestRecordDesc.zip CSV 文件描述文件 data/Boundaries.cs

wenqi 1 Dec 10, 2021
Demo code for ICCV 2021 paper "Sensor-Guided Optical Flow"

Sensor-Guided Optical Flow Demo code for "Sensor-Guided Optical Flow", ICCV 2021 This code is provided to replicate results with flow hints obtained f

10 Mar 16, 2022
This repo is about to create the Streamlit application for given ML model.

HR-Attritiion-using-Streamlit This repo is about to create the Streamlit application for given ML model. Problem Statement: Managing peoples at workpl

Pavan Giri 0 Dec 10, 2021
Enhancing Aspect-Based Sentiment Analysis with Supervised Contrastive Learning.

Enhancing Aspect-Based Sentiment Analysis with Supervised Contrastive Learning. Enhancing Aspect-Based Sentiment Analysis with Supervised Contrastive

<a href=[email protected](SZ)"> 7 Dec 16, 2021
Dataset used in "PlantDoc: A Dataset for Visual Plant Disease Detection" accepted in CODS-COMAD 2020

PlantDoc: A Dataset for Visual Plant Disease Detection This repository contains the Cropped-PlantDoc dataset used for benchmarking classification mode

Pratik Kayal 109 Dec 29, 2022
Multitask Learning Strengthens Adversarial Robustness

Multitask Learning Strengthens Adversarial Robustness

Columbia University 15 Jun 10, 2022
Exploring whether attention is necessary for vision transformers

Do You Even Need Attention? A Stack of Feed-Forward Layers Does Surprisingly Well on ImageNet Paper/Report TL;DR We replace the attention layer in a v

Luke Melas-Kyriazi 461 Jan 07, 2023
🎃 Core identification module of AI powerful point reading system platform.

ppReader-Kernel Intro Core identification module of AI powerful point reading system platform. Usage 硬件: Windows10、GPU:nvdia GTX 1060 、普通RBG相机 软件: con

CrashKing 1 Jan 11, 2022
A rule-based log analyzer & filter

Flog 一个根据规则集来处理文本日志的工具。 前言 在日常开发过程中,由于缺乏必要的日志规范,导致很多人乱打一通,一个日志文件夹解压缩后往往有几十万行。 日志泛滥会导致信息密度骤减,给排查问题带来了不小的麻烦。 以前都是用grep之类的工具先挑选出有用的,再逐条进行排查,费时费力。在忍无可忍之后决

上山打老虎 9 Jun 23, 2022
Code for approximate graph reduction techniques for cardinality-based DSFM, from paper

SparseCard Code for approximate graph reduction techniques for cardinality-based DSFM, from paper "Approximate Decomposable Submodular Function Minimi

Nate Veldt 1 Nov 25, 2022
This repository contains the source code for the paper "DONeRF: Towards Real-Time Rendering of Compact Neural Radiance Fields using Depth Oracle Networks",

DONeRF: Towards Real-Time Rendering of Compact Neural Radiance Fields using Depth Oracle Networks Project Page | Video | Presentation | Paper | Data L

Facebook Research 281 Dec 22, 2022
This repository contains a Ruby API for utilizing TensorFlow.

tensorflow.rb Description This repository contains a Ruby API for utilizing TensorFlow. Linux CPU Linux GPU PIP Mac OS CPU Not Configured Not Configur

somatic labs 825 Dec 26, 2022
EFENet: Reference-based Video Super-Resolution with Enhanced Flow Estimation

EFENet EFENet: Reference-based Video Super-Resolution with Enhanced Flow Estimation Code is a bit messy now. I woud clean up soon. For training the EF

Yaping Zhao 19 Nov 05, 2022