Benchmarks for the Optimal Power Flow Problem

Overview

Power Grid Lib - Optimal Power Flow

This benchmark library is curated and maintained by the IEEE PES Task Force on Benchmarks for Validation of Emerging Power System Algorithms and is designed to evaluate a well established version of the the AC Optimal Power Flow problem. This introductory video and detailed report present the motivations and goals of this benchmark library. In particular, these cases are designed for benchmarking algorithms that solve the following Non-Convex Nonlinear Program,

  The Mathematical Model of the Optimal Power Flow Problem  

A detailed description of this mathematical model is available here. All of the cases files are curated in the MATPOWER data format. Open-source reference implementations are available in MATPOWER and PowerModels.jl and baseline results are reported in BASELINE.md.

Problem Variants

These cases may also be useful for benchmarking the following variants of the Optimal Power Flow problem,

  • DC Optimal Power Flow
  • AC Optimal Transmission Switching
  • DC Optimal Transmission Switching

That said, these cases are curated with the AC Optimal Power Flow problem in mind. Application to other domains and problem variants should be done with discretion.

Case File Overview

A forthcoming technical report will detail the sources, motivations, and procedures for curating these case files.

In this repository the network data files are organized into the following three broad groups:

  • /*.m - base case benchmarks as originally specified
  • /api/*.m - heavily loaded test cases (i.e. binding thermal limit constraints)
  • /sad/*.m - small phase angle difference cases (i.e. binding phase angle difference constraints)

Contributions

All case files are provided under a Creative Commons Attribution License, which allows anyone to share or adapt these cases as long as they give appropriate credit to the orginal author, provide a link to the license, and indicate if changes were made.

Community-based recommendations and contributions are welcome and encouraged in all PGLib repositories. Please feel free to submit comments and questions in the issue tracker. Corrections and new network contributions are welcome via pull requests. All data contributions are subject to a quality assurance review by the repository curator(s).

Citation Guidelines

This repository is not static. Consequently, it is critically important to indicate the version number when referencing this repository in scholarly work.

Users of this these cases are encouraged to cite the original source documents that are indicated in the file headers and the achrive report.

Comments
  • DC Baselines, Constraints, and Inf

    DC Baselines, Constraints, and Inf

    Hello, I have some related questions about the DC OPF baselines.

    1. It seems that for many of the typical operating conditions, the DC approximation better minimizes the cost than the full AC solution. Is this expected? Does this factor in any constraint violations?

    2. In some of the small angle difference cases, the objective values for the DC approximation are listed as "Inf". Does that indicate a constraint violation?

    opened by ElPiloto 5
  • radial test cases

    radial test cases

    It seems none of the test cases in pglib-opf are radial? That makes it hard to use any of these benchmarks to use/extend them for models that require a consistent definition of upstream/downstream, e.g. as in [1] below.

    I recall that the NESTA archive had a /rad m file collection. Was there any discussion on including that in pglib-opf? What happened to it?

    [1] Dvorkin, V., Fioretto, F., Van Hentenryck, P., Kazempour, J., & Pinson, P. (2020). Differentially Private Optimal Power Flow for Distribution Grids, 1, 1–9. Retrieved from http://arxiv.org/abs/2004.03921

    opened by frederikgeth 5
  • Help In SDP-Relaxation method for solving OPF Problem

    Help In SDP-Relaxation method for solving OPF Problem

    Hello Sir, i came to know about you from your videos of Convex Relaxations in Youtube... Sir i need help from you, i am stuck in my project work....i am trying to find an optimze a system 3m9b for test....

    and i wrote the optimization problem like this.... for i=1:1 cvx_begin cvx_solver sedumi

    variables u(npv,1) variable W(2n,2n) symmetric summ=trace(YYreal(:,:,1)*W); for i=2:n summ=summ+trace(YYreal(:,:,i)*W); end for i=1:npv u(i,1)==trace(YYreal(:,:,i+npq)W);
    (This u contais the PV buses active power generation...(whose optimal value has to be found)) end minimize(w
    (sum(u)+trace(YYreal(:,:,n)*W)))

    subject to for i=1:npq (this are equality constraints "calculated active power=specified active power" for pv&pq buses) trace(YYreal(:,:,i)*W)-(Pg(i,1)-Pl(i,1))==0; trace(YYreal(:,:,i)*W)-(Pg(i,1)-Pl(i,1))==0; end for i=1:npv (this bounds i thought to apply after getting a local optimal solution from Newtons Method) trace(YYreal(:,:,i+npq)*W)+Pl(i+npq,1)>=-0.2 trace(YYreal(:,:,i+npq)*W)+Pl(i+npq,1)<=3 end

    for i=1:npq (this are equality constraints "calculated reactive power=specified reactive power" for only pq buses) trace(YYimag(:,:,i)*W)-(Qg(i,1)-Ql(i,1))==0; trace(YYimag(:,:,i)*W)-(Qg(i,1)-Ql(i,1))==0; end

    W==semidefinite(2*n); W>=0; cvx_end w=w+1 for i=1:npv Pg(i+npq,1)=trace(YYreal(:,:,i+npq)*W)+Pl(i+npq,1); end end

    Sir, in the paper it is "Zero Duality Gap In Optimal Power Flow" that rank of W matrix variable should come=1 when the duality gap is "0". and for that we applied weight method.(w is the weight)..

    Sir.. for some values of w i get solution as 'NAN'. and for some i get an optimal solution...but the 'W matrix' never comes of rank 1...

    i dont know where i am going wrong...but please help me with this....

    opened by 12146 1
  • Line limits units (`rateA`)

    Line limits units (`rateA`)

    Hi, first, thanks for your work aggregating and building this library!

    I'm trying to use the 1354pegase case and am implementing my own simplified opf model where I want to impose line current constraints for line l = (i,j) according to

    (|y_ij| |V_i - V_j|)^2 <= rhs
    

    for V_i, V_j the complex voltages at buses i and j and |y_ij| is the magnitude of the (i,j) element of the admittance matrix. (Btw, I'm ignoring tap adjustments now...)

    However, I'm not sure what the units of the rhs should be from the pglib case. According to Table V of the report (https://arxiv.org/abs/1908.02788), it seems that rateA is a thermal limit that was determined by the TL-UB method from Section V.B.2. Does this mean that the rateA is already normalized by baseMVA and given in p.u. form? Or should I divide rateA by 100 to get the p.u. (and then square it to set the value of the rhs).

    Thanks!

    opened by jacob-roth 1
  • Tranformer Parameter Checks

    Tranformer Parameter Checks

    In some cases all tap settings are 1.0, I check should be made so that this only occurs when the value is not 1.0 or the branch is connecting two voltage levels.

    opened by ccoffrin 1
  • Inverted Generator Bounds

    Inverted Generator Bounds

    Some inactive generators have infeasible active power bounds (i.e. pmax < pmin). Resolve this by ensuring,

    pmin = min(pmin,pmax)
    pmax = min(pmin,pmax)
    

    in all generators.

    opened by ccoffrin 0
  • Generator LB higher than UB in 1888_rte__api

    Generator LB higher than UB in 1888_rte__api

    In pglib_opf_case1888_rte__api.m, the real power lower bound for the generator at bus 1689 (line 2,044 of the `.m' file) is 280.0, but the upper bound has been modified to be 64 (from 930 in the original case). Is this intentional? If so, what does it mean if the generator is turned on?

    Thank you for your help!

    opened by emma58 2
  • Error when solving case89_pegase__api and case240_pserc__api

    Error when solving case89_pegase__api and case240_pserc__api

    Hello,

    I got the following error when solving OPF for 2 test cases: case89_pegase__api and case240_pserc__api with the MATPOWER function runopf. It seems that there is a problem when generator bound Pmax is 0.

    Error using makeAvl (line 52) makeAvl: either Qmin or Qmax must be equal to zero for each dispatchable load.

    Error in opf_setup (line 171) [Avl, lvl, uvl] = makeAvl(baseMVA, gen);

    Error in opf (line 198) om = opf_setup(mpc, mpopt);

    Error in runopf (line 75) [r, success] = opf(casedata, mpopt);

    Best regards,

    Christian

    opened by cbingane 7
  • Add 68-Bus System

    Add 68-Bus System

    Explore the possibility of including a network derived from the 68-Bus, 16-Machine, 5-Area Dynamic Test System.

    Related Links:

    • http://sites.ieee.org/pes-psdp/benchmark-systems-2/
    • https://electricgrids.engr.tamu.edu/electric-grid-test-cases/
    • http://icseg.iti.illinois.edu/new-england-68-bus-test-system/
    • http://sites.ieee.org/pes-resource-center/files/2015/08/PES_TR18_Benchmark-Systems-for-Small-Signal-Stability-Analysis-and-Control.pdf
    • http://www.sel.eesc.usp.br/ieee/NETS68/New_England_New_York_68_Bus_System_study_report.pdf
    opened by ccoffrin 0
Releases(v21.07)
Owner
A Library of IEEE PES Power Grid Benchmarks
A Library of IEEE PES Power Grid Benchmarks
GPT, but made only out of gMLPs

GPT - gMLP This repository will attempt to crack long context autoregressive language modeling (GPT) using variations of gMLPs. Specifically, it will

Phil Wang 80 Dec 01, 2022
Faster RCNN pytorch windows

Faster-RCNN-pytorch-windows Faster RCNN implementation with pytorch for windows Open cmd, compile this comands: cd lib python setup.py build develop T

Hwa-Rang Kim 1 Nov 11, 2022
Keras documentation, hosted live at keras.io

Keras.io documentation generator This repository hosts the code used to generate the keras.io website. Generating a local copy of the website pip inst

Keras 2k Jan 08, 2023
SAT Project - The first project I had done at General Assembly, performed EDA, data cleaning and created data visualizations

Project 1: Standardized Test Analysis by Adam Klesc Overview This project covers: Basic statistics and probability Many Python programming concepts Pr

Adam Muhammad Klesc 1 Jan 03, 2022
🏖 Keras Implementation of Painting outside the box

Keras implementation of Image OutPainting This is an implementation of Painting Outside the Box: Image Outpainting paper from Standford University. So

Bendang 1.1k Dec 10, 2022
PyTorch/TorchScript compiler for NVIDIA GPUs using TensorRT

PyTorch/TorchScript compiler for NVIDIA GPUs using TensorRT

NVIDIA Corporation 1.8k Dec 30, 2022
Self-Supervised CNN-GCN Autoencoder

GCNDepth Self-Supervised CNN-GCN Autoencoder GCNDepth: Self-supervised monocular depth estimation based on graph convolutional network To be published

53 Dec 14, 2022
The official codes for the ICCV2021 Oral presentation "Rethinking Counting and Localization in Crowds: A Purely Point-Based Framework"

P2PNet (ICCV2021 Oral Presentation) This repository contains codes for the official implementation in PyTorch of P2PNet as described in Rethinking Cou

Tencent YouTu Research 208 Dec 26, 2022
Meta Representation Transformation for Low-resource Cross-lingual Learning

MetaXL: Meta Representation Transformation for Low-resource Cross-lingual Learning This repo hosts the code for MetaXL, published at NAACL 2021. [Meta

Microsoft 36 Aug 17, 2022
working repo for my xumx-sliCQ submissions to the ISMIR 2021 MDX

Music Demixing Challenge - xumx-sliCQ This repository is the GitHub mirror of my working submission repository for the AICrowd ISMIR 2021 Music Demixi

4 Aug 25, 2021
Code for paper [ACE: Ally Complementary Experts for Solving Long-Tailed Recognition in One-Shot] (ICCV 2021, oral))

ACE: Ally Complementary Experts for Solving Long-Tailed Recognition in One-Shot This repository is the official PyTorch implementation of ICCV-21 pape

Jiarui 21 May 09, 2022
The original implementation of TNDM used in the NeurIPS 2021 paper (no longer being updated)

TNDM - Targeted Neural Dynamical Modeling Note: This code is no longer being updated. The official re-implementation can be found at: https://github.c

1 Jul 21, 2022
A fast Evolution Strategy implementation in Python

Evostra: Evolution Strategy for Python Evolution Strategy (ES) is an optimization technique based on ideas of adaptation and evolution. You can learn

Mika 251 Dec 08, 2022
A PyTorch Implementation of "SINE: Scalable Incomplete Network Embedding" (ICDM 2018).

Scalable Incomplete Network Embedding ⠀⠀ A PyTorch implementation of Scalable Incomplete Network Embedding (ICDM 2018). Abstract Attributed network em

Benedek Rozemberczki 69 Sep 22, 2022
An executor that performs image segmentation on fashion items

ClothingSegmenter U2NET fashion image/clothing segmenter based on https://github.com/levindabhi/cloth-segmentation Overview The ClothingSegmenter exec

Jina AI 5 Mar 30, 2022
Keras Realtime Multi-Person Pose Estimation - Keras version of Realtime Multi-Person Pose Estimation project

This repository has become incompatible with the latest and recommended version of Tensorflow 2.0 Instead of refactoring this code painfully, I create

M Faber 769 Dec 08, 2022
免费获取http代理并生成proxifier配置文件

freeproxy 免费获取http代理并生成proxifier配置文件 公众号:台下言书 工具说明:https://mp.weixin.qq.com/s?__biz=MzIyNDkwNjQ5Ng==&mid=2247484425&idx=1&sn=56ccbe130822aa35038095317

说书人 32 Mar 25, 2022
Supervised & unsupervised machine-learning techniques are applied to the database of weighted P4s which admit Calabi-Yau hypersurfaces.

Weighted Projective Spaces ML Description: The database of 5-vectors describing 4d weighted projective spaces which admit Calabi-Yau hypersurfaces are

Ed Hirst 3 Sep 08, 2022
Caffe models in TensorFlow

Caffe to TensorFlow Convert Caffe models to TensorFlow. Usage Run convert.py to convert an existing Caffe model to TensorFlow. Make sure you're using

Saumitro Dasgupta 2.8k Dec 31, 2022
HGCN: Harmonic Gated Compensation Network For Speech Enhancement

HGCN The official repo of "HGCN: Harmonic Gated Compensation Network For Speech Enhancement", which was accepted at ICASSP2022. How to use step1: Calc

ScorpioMiku 33 Nov 14, 2022