Pretrained models for Jax/Haiku; MobileNet, ResNet, VGG, Xception.

Overview

Pre-trained image classification models for Jax/Haiku

Jax/Haiku Applications are deep learning models that are made available alongside pre-trained weights. These models can be used for prediction, feature extraction, and fine-tuning.

Available Models

  • MobileNetV1
  • ResNet, ResNetV2
  • VGG16, VGG19
  • Xception

Planned Releases

  • MobileNetV2, MobileNetV3
  • InceptionResNetV2, InceptionV3
  • EfficientNetV1, EfficientNetV2

Installation

Haikumodels require Python 3.7 or later.

  1. Needed libraries can be installed using "installation.txt".
  2. If Jax GPU support desired, must be installed seperately according to system needs.

Usage examples for image classification models

Classify ImageNet classes with ResNet50

import haiku as hk
import jax
import jax.numpy as jnp
from PIL import Image

import haikumodels as hm

rng = jax.random.PRNGKey(42)


def _model(images, is_training):
  net = hm.ResNet50()
  return net(images, is_training)


model = hk.transform_with_state(_model)

img_path = "elephant.jpg"
img = Image.open(img_path).resize((224, 224))

x = jnp.asarray(img, dtype=jnp.float32)
x = jnp.expand_dims(x, axis=0)
x = hm.resnet.preprocess_input(x)

params, state = model.init(rng, x, is_training=True)

preds, _ = model.apply(params, state, None, x, is_training=False)
# decode the results into a list of tuples (class, description, probability)
# (one such list for each sample in the batch)
print("Predicted:", hm.decode_predictions(preds, top=3)[0])
# Predicted:
# [('n02504013', 'Indian_elephant', 0.8784022),
# ('n01871265', 'tusker', 0.09620289),
# ('n02504458', 'African_elephant', 0.025362419)]

Extract features with VGG16

import haiku as hk
import jax
import jax.numpy as jnp
from PIL import Image

import haikumodels as hm

rng = jax.random.PRNGKey(42)

model = hk.without_apply_rng(hk.transform(hm.VGG16(include_top=False)))

img_path = "elephant.jpg"
img = Image.open(img_path).resize((224, 224))

x = jnp.asarray(img, dtype=jnp.float32)
x = jnp.expand_dims(x, axis=0)
x = hm.vgg.preprocess_input(x)

params = model.init(rng, x)

features = model.apply(params, x)

Fine-tune Xception on a new set of classes

from typing import Callable, Any, Sequence, Optional

import optax
import haiku as hk
import jax
import jax.numpy as jnp

import haikumodels as hm

rng = jax.random.PRNGKey(42)


class Freezable_TrainState(NamedTuple):
  trainable_params: hk.Params
  non_trainable_params: hk.Params
  state: hk.State
  opt_state: optax.OptState


# create your custom top layers and include the desired pretrained model
class ft_xception(hk.Module):

  def __init__(
      self,
      classes: int,
      classifier_activation: Callable[[jnp.ndarray],
                                      jnp.ndarray] = jax.nn.softmax,
      with_bias: bool = True,
      w_init: Callable[[Sequence[int], Any], jnp.ndarray] = None,
      b_init: Callable[[Sequence[int], Any], jnp.ndarray] = None,
      name: Optional[str] = None,
  ):
    super().__init__(name=name)
    self.classifier_activation = classifier_activation

    self.xception_no_top = hm.Xception(include_top=False)
    self.dense_layer = hk.Linear(
        output_size=1024,
        with_bias=with_bias,
        w_init=w_init,
        b_init=b_init,
        name="trainable_dense_layer",
    )
    self.top_layer = hk.Linear(
        output_size=classes,
        with_bias=with_bias,
        w_init=w_init,
        b_init=b_init,
        name="trainable_top_layer",
    )

  def __call__(self, inputs: jnp.ndarray, is_training: bool):
    out = self.xception_no_top(inputs, is_training)
    out = jnp.mean(out, axis=(1, 2))
    out = self.dense_layer(out)
    out = jax.nn.relu(out)
    out = self.top_layer(out)
    out = self.classifier_activation(out)


# use `transform_with_state` if models has batchnorm in it
# else use `transform` and then `without_apply_rng`
def _model(images, is_training):
  net = ft_xception(classes=200)
  return net(images, is_training)


model = hk.transform_with_state(_model)

# create your desired optimizer using Optax or alternatives
opt = optax.rmsprop(learning_rate=1e-4, momentum=0.90)


# this function will initialize params and state
# use the desired keyword to divide params to trainable and non_trainable
def initial_state(x_y, nonfreeze_key="trainable"):
  x, _ = x_y
  params, state = model.init(rng, x, is_training=True)

  trainable_params, non_trainable_params = hk.data_structures.partition(
      lambda m, n, p: nonfreeze_key in m, params)

  opt_state = opt.init(params)

  return Freezable_TrainState(trainable_params, non_trainable_params, state,
                              opt_state)


train_state = initial_state(next(gen_x_y))


# create your own custom loss function as desired
def loss_function(trainable_params, non_trainable_params, state, x_y):
  x, y = x_y
  params = hk.data_structures.merge(trainable_params, non_trainable_params)
  y_, state = model.apply(params, state, None, x, is_training=True)

  cce = categorical_crossentropy(y, y_)

  return cce, state


# to update params and optimizer, a train_step function must be created
@jax.jit
def train_step(train_state: Freezable_TrainState, x_y):
  trainable_params, non_trainable_params, state, opt_state = train_state
  trainable_params_grads, _ = jax.grad(loss_function,
                                       has_aux=True)(trainable_params,
                                                     non_trainable_params,
                                                     state, x_y)

  updates, new_opt_state = opt.update(trainable_params_grads, opt_state)
  new_trainable_params = optax.apply_updates(trainable_params, updates)

  train_state = Freezable_TrainState(new_trainable_params, non_trainable_params,
                                     state, new_opt_state)
  return train_state


# train the model on the new data for few epochs
train_state = train_step(train_state, next(gen_x_y))

# after training is complete it possible to merge
# trainable and non_trainable params to use for prediction
trainable_params, non_trainable_params, state, _ = train_state
params = hk.data_structures.merge(trainable_params, non_trainable_params)
preds, _ = model.apply(params, state, None, x, is_training=False)
You might also like...
3D ResNet Video Classification accelerated by TensorRT
3D ResNet Video Classification accelerated by TensorRT

Activity Recognition TensorRT Perform video classification using 3D ResNets trained on Kinetics-400 dataset and accelerated with TensorRT P.S Click on

improvement of CLIP features over the traditional resnet features on the visual question answering, image captioning, navigation and visual entailment tasks.

CLIP-ViL In our paper "How Much Can CLIP Benefit Vision-and-Language Tasks?", we show the improvement of CLIP features over the traditional resnet fea

PyTorch implementation of the R2Plus1D convolution based ResNet architecture described in the paper "A Closer Look at Spatiotemporal Convolutions for Action Recognition"

R2Plus1D-PyTorch PyTorch implementation of the R2Plus1D convolution based ResNet architecture described in the paper "A Closer Look at Spatiotemporal

PyTorch implementation of MoCo v3 for self-supervised ResNet and ViT.

MoCo v3 for Self-supervised ResNet and ViT Introduction This is a PyTorch implementation of MoCo v3 for self-supervised ResNet and ViT. The original M

Reproduces ResNet-V3 with pytorch
Reproduces ResNet-V3 with pytorch

ResNeXt.pytorch Reproduces ResNet-V3 (Aggregated Residual Transformations for Deep Neural Networks) with pytorch. Tried on pytorch 1.6 Trains on Cifar

DeepLab resnet v2 model in pytorch

pytorch-deeplab-resnet DeepLab resnet v2 model implementation in pytorch. The architecture of deepLab-ResNet has been replicated exactly as it is from

Reproduce ResNet-v2(Identity Mappings in Deep Residual Networks) with MXNet
Reproduce ResNet-v2(Identity Mappings in Deep Residual Networks) with MXNet

Reproduce ResNet-v2 using MXNet Requirements Install MXNet on a machine with CUDA GPU, and it's better also installed with cuDNN v5 Please fix the ran

NFT-Price-Prediction-CNN - Using visual feature extraction, prices of NFTs are predicted via CNN (Alexnet and Resnet) architectures.

NFT-Price-Prediction-CNN - Using visual feature extraction, prices of NFTs are predicted via CNN (Alexnet and Resnet) architectures.

In this project we use both Resnet and Self-attention layer for cat, dog and flower classification.
In this project we use both Resnet and Self-attention layer for cat, dog and flower classification.

cdf_att_classification classes = {0: 'cat', 1: 'dog', 2: 'flower'} In this project we use both Resnet and Self-attention layer for cdf-Classification.

Comments
  • Expected top-1 test accuracy

    Expected top-1 test accuracy

    Hi

    This is a fantastic project! The released checkpoints are super helpful!

    I am wondering what's the top-1 test accuracy that one should get using the released ResNet-50 checkpoints. I am able to reach 0.749 using the my own ImageNet dataloader implemented via Tensorflow Datasets. Is the number close to your results?

    BTW, it would also be very helpful if you could release your training and dataloading code for these models!

    Thanks,

    opened by xidulu 2
  • Fitting issue

    Fitting issue

    I was trying to use a few of your pre-trained models, in particular the ResNet50 and VGG16 for features extraction, but unfortunately I didn't manage to fit on the Nvidia Titan X with 12GB of VRAM my question is which GPU did you use for training, how much VRAM I need for use them?

    For the VGG16 the system was asking me for 4 more GB and for the ResNet50 about 20 more

    Thanks.

    opened by mattiadutto 1
Owner
Alper Baris CELIK
Alper Baris CELIK
Predictive Maintenance LSTM

Predictive-Maintenance-LSTM - Predictive maintenance study for Complex case study, we've obtained failure causes by operational error and more deeply by design mistakes.

Amir M. Sadafi 1 Dec 31, 2021
Unofficial PyTorch Implementation of "DOLG: Single-Stage Image Retrieval with Deep Orthogonal Fusion of Local and Global Features"

Pytorch Implementation of Deep Orthogonal Fusion of Local and Global Features (DOLG) This is the unofficial PyTorch Implementation of "DOLG: Single-St

DK 96 Jan 06, 2023
Offcial implementation of "A Hybrid Video Anomaly Detection Framework via Memory-Augmented Flow Reconstruction and Flow-Guided Frame Prediction, ICCV-2021".

HF2-VAD Offcial implementation of "A Hybrid Video Anomaly Detection Framework via Memory-Augmented Flow Reconstruction and Flow-Guided Frame Predictio

76 Dec 21, 2022
Attention mechanism with MNIST dataset

[TensorFlow] Attention mechanism with MNIST dataset Usage $ python run.py Result Training Loss graph. Test Each figure shows input digit, attention ma

YeongHyeon Park 12 Jun 10, 2022
On Uncertainty, Tempering, and Data Augmentation in Bayesian Classification

Understanding Bayesian Classification This repository hosts the code to reproduce the results presented in the paper On Uncertainty, Tempering, and Da

Sanyam Kapoor 18 Nov 17, 2022
A python library for implementing a recommender system

python-recsys A python library for implementing a recommender system. Installation Dependencies python-recsys is build on top of Divisi2, with csc-pys

Oscar Celma 1.5k Dec 17, 2022
Code for our paper 'Generalized Category Discovery'

Generalized Category Discovery This repo is a placeholder for code for our paper: Generalized Category Discovery Abstract: In this paper, we consider

107 Dec 28, 2022
Pytorch for Segmentation

Pytorch for Semantic Segmentation This repo has been deprecated currently and I will not maintain it. Meanwhile, I strongly recommend you can refer to

ycszen 411 Nov 22, 2022
IEEE Winter Conference on Applications of Computer Vision 2022 Accepted

SSKT(Accepted WACV2022) Concept map Dataset Image dataset CIFAR10 (torchvision) CIFAR100 (torchvision) STL10 (torchvision) Pascal VOC (torchvision) Im

1 Nov 17, 2022
Learning to Self-Train for Semi-Supervised Few-Shot

Learning to Self-Train for Semi-Supervised Few-Shot Classification This repository contains the TensorFlow implementation for NeurIPS 2019 Paper "Lear

86 Dec 29, 2022
An open-source Deep Learning Engine for Healthcare that aims to treat & prevent major diseases

AlphaCare Background AlphaCare is a work-in-progress, open-source Deep Learning Engine for Healthcare that aims to treat and prevent major diseases. T

Siraj Raval 44 Nov 05, 2022
[NeurIPS 2021] Garment4D: Garment Reconstruction from Point Cloud Sequences

Garment4D [PDF] | [OpenReview] | [Project Page] Overview This is the codebase for our NeurIPS 2021 paper Garment4D: Garment Reconstruction from Point

Fangzhou Hong 112 Dec 23, 2022
Akshat Surolia 2 May 11, 2022
Deduplicating Training Data Makes Language Models Better

Deduplicating Training Data Makes Language Models Better This repository contains code to deduplicate language model datasets as descrbed in the paper

Google Research 431 Dec 27, 2022
Implementation of the pix2pix model on satellite images

This repo shows how to implement and use the pix2pix GAN model for image to image translation. The model is demonstrated on satellite images, and the

3 May 24, 2022
Lightweight Python library for adding real-time object tracking to any detector.

Norfair is a customizable lightweight Python library for real-time 2D object tracking. Using Norfair, you can add tracking capabilities to any detecto

Tryolabs 1.7k Jan 05, 2023
Designing a Practical Degradation Model for Deep Blind Image Super-Resolution (ICCV, 2021) (PyTorch) - We released the training code!

Designing a Practical Degradation Model for Deep Blind Image Super-Resolution Kai Zhang, Jingyun Liang, Luc Van Gool, Radu Timofte Computer Vision Lab

Kai Zhang 804 Jan 08, 2023
Sandbox for training deep learning networks

Deep learning networks This repo is used to research convolutional networks primarily for computer vision tasks. For this purpose, the repo contains (

Oleg Sémery 2.7k Jan 01, 2023
NeRViS: Neural Re-rendering for Full-frame Video Stabilization

Neural Re-rendering for Full-frame Video Stabilization

Yu-Lun Liu 9 Jun 17, 2022
Detecting Human-Object Interactions with Object-Guided Cross-Modal Calibrated Semantics

[AAAI2022] Detecting Human-Object Interactions with Object-Guided Cross-Modal Calibrated Semantics Overall pipeline of OCN. Paper Link: [arXiv] [AAAI

13 Nov 21, 2022