Pretrained models for Jax/Haiku; MobileNet, ResNet, VGG, Xception.

Overview

Pre-trained image classification models for Jax/Haiku

Jax/Haiku Applications are deep learning models that are made available alongside pre-trained weights. These models can be used for prediction, feature extraction, and fine-tuning.

Available Models

  • MobileNetV1
  • ResNet, ResNetV2
  • VGG16, VGG19
  • Xception

Planned Releases

  • MobileNetV2, MobileNetV3
  • InceptionResNetV2, InceptionV3
  • EfficientNetV1, EfficientNetV2

Installation

Haikumodels require Python 3.7 or later.

  1. Needed libraries can be installed using "installation.txt".
  2. If Jax GPU support desired, must be installed seperately according to system needs.

Usage examples for image classification models

Classify ImageNet classes with ResNet50

import haiku as hk
import jax
import jax.numpy as jnp
from PIL import Image

import haikumodels as hm

rng = jax.random.PRNGKey(42)


def _model(images, is_training):
  net = hm.ResNet50()
  return net(images, is_training)


model = hk.transform_with_state(_model)

img_path = "elephant.jpg"
img = Image.open(img_path).resize((224, 224))

x = jnp.asarray(img, dtype=jnp.float32)
x = jnp.expand_dims(x, axis=0)
x = hm.resnet.preprocess_input(x)

params, state = model.init(rng, x, is_training=True)

preds, _ = model.apply(params, state, None, x, is_training=False)
# decode the results into a list of tuples (class, description, probability)
# (one such list for each sample in the batch)
print("Predicted:", hm.decode_predictions(preds, top=3)[0])
# Predicted:
# [('n02504013', 'Indian_elephant', 0.8784022),
# ('n01871265', 'tusker', 0.09620289),
# ('n02504458', 'African_elephant', 0.025362419)]

Extract features with VGG16

import haiku as hk
import jax
import jax.numpy as jnp
from PIL import Image

import haikumodels as hm

rng = jax.random.PRNGKey(42)

model = hk.without_apply_rng(hk.transform(hm.VGG16(include_top=False)))

img_path = "elephant.jpg"
img = Image.open(img_path).resize((224, 224))

x = jnp.asarray(img, dtype=jnp.float32)
x = jnp.expand_dims(x, axis=0)
x = hm.vgg.preprocess_input(x)

params = model.init(rng, x)

features = model.apply(params, x)

Fine-tune Xception on a new set of classes

from typing import Callable, Any, Sequence, Optional

import optax
import haiku as hk
import jax
import jax.numpy as jnp

import haikumodels as hm

rng = jax.random.PRNGKey(42)


class Freezable_TrainState(NamedTuple):
  trainable_params: hk.Params
  non_trainable_params: hk.Params
  state: hk.State
  opt_state: optax.OptState


# create your custom top layers and include the desired pretrained model
class ft_xception(hk.Module):

  def __init__(
      self,
      classes: int,
      classifier_activation: Callable[[jnp.ndarray],
                                      jnp.ndarray] = jax.nn.softmax,
      with_bias: bool = True,
      w_init: Callable[[Sequence[int], Any], jnp.ndarray] = None,
      b_init: Callable[[Sequence[int], Any], jnp.ndarray] = None,
      name: Optional[str] = None,
  ):
    super().__init__(name=name)
    self.classifier_activation = classifier_activation

    self.xception_no_top = hm.Xception(include_top=False)
    self.dense_layer = hk.Linear(
        output_size=1024,
        with_bias=with_bias,
        w_init=w_init,
        b_init=b_init,
        name="trainable_dense_layer",
    )
    self.top_layer = hk.Linear(
        output_size=classes,
        with_bias=with_bias,
        w_init=w_init,
        b_init=b_init,
        name="trainable_top_layer",
    )

  def __call__(self, inputs: jnp.ndarray, is_training: bool):
    out = self.xception_no_top(inputs, is_training)
    out = jnp.mean(out, axis=(1, 2))
    out = self.dense_layer(out)
    out = jax.nn.relu(out)
    out = self.top_layer(out)
    out = self.classifier_activation(out)


# use `transform_with_state` if models has batchnorm in it
# else use `transform` and then `without_apply_rng`
def _model(images, is_training):
  net = ft_xception(classes=200)
  return net(images, is_training)


model = hk.transform_with_state(_model)

# create your desired optimizer using Optax or alternatives
opt = optax.rmsprop(learning_rate=1e-4, momentum=0.90)


# this function will initialize params and state
# use the desired keyword to divide params to trainable and non_trainable
def initial_state(x_y, nonfreeze_key="trainable"):
  x, _ = x_y
  params, state = model.init(rng, x, is_training=True)

  trainable_params, non_trainable_params = hk.data_structures.partition(
      lambda m, n, p: nonfreeze_key in m, params)

  opt_state = opt.init(params)

  return Freezable_TrainState(trainable_params, non_trainable_params, state,
                              opt_state)


train_state = initial_state(next(gen_x_y))


# create your own custom loss function as desired
def loss_function(trainable_params, non_trainable_params, state, x_y):
  x, y = x_y
  params = hk.data_structures.merge(trainable_params, non_trainable_params)
  y_, state = model.apply(params, state, None, x, is_training=True)

  cce = categorical_crossentropy(y, y_)

  return cce, state


# to update params and optimizer, a train_step function must be created
@jax.jit
def train_step(train_state: Freezable_TrainState, x_y):
  trainable_params, non_trainable_params, state, opt_state = train_state
  trainable_params_grads, _ = jax.grad(loss_function,
                                       has_aux=True)(trainable_params,
                                                     non_trainable_params,
                                                     state, x_y)

  updates, new_opt_state = opt.update(trainable_params_grads, opt_state)
  new_trainable_params = optax.apply_updates(trainable_params, updates)

  train_state = Freezable_TrainState(new_trainable_params, non_trainable_params,
                                     state, new_opt_state)
  return train_state


# train the model on the new data for few epochs
train_state = train_step(train_state, next(gen_x_y))

# after training is complete it possible to merge
# trainable and non_trainable params to use for prediction
trainable_params, non_trainable_params, state, _ = train_state
params = hk.data_structures.merge(trainable_params, non_trainable_params)
preds, _ = model.apply(params, state, None, x, is_training=False)
You might also like...
3D ResNet Video Classification accelerated by TensorRT
3D ResNet Video Classification accelerated by TensorRT

Activity Recognition TensorRT Perform video classification using 3D ResNets trained on Kinetics-400 dataset and accelerated with TensorRT P.S Click on

improvement of CLIP features over the traditional resnet features on the visual question answering, image captioning, navigation and visual entailment tasks.

CLIP-ViL In our paper "How Much Can CLIP Benefit Vision-and-Language Tasks?", we show the improvement of CLIP features over the traditional resnet fea

PyTorch implementation of the R2Plus1D convolution based ResNet architecture described in the paper "A Closer Look at Spatiotemporal Convolutions for Action Recognition"

R2Plus1D-PyTorch PyTorch implementation of the R2Plus1D convolution based ResNet architecture described in the paper "A Closer Look at Spatiotemporal

PyTorch implementation of MoCo v3 for self-supervised ResNet and ViT.

MoCo v3 for Self-supervised ResNet and ViT Introduction This is a PyTorch implementation of MoCo v3 for self-supervised ResNet and ViT. The original M

Reproduces ResNet-V3 with pytorch
Reproduces ResNet-V3 with pytorch

ResNeXt.pytorch Reproduces ResNet-V3 (Aggregated Residual Transformations for Deep Neural Networks) with pytorch. Tried on pytorch 1.6 Trains on Cifar

DeepLab resnet v2 model in pytorch

pytorch-deeplab-resnet DeepLab resnet v2 model implementation in pytorch. The architecture of deepLab-ResNet has been replicated exactly as it is from

Reproduce ResNet-v2(Identity Mappings in Deep Residual Networks) with MXNet
Reproduce ResNet-v2(Identity Mappings in Deep Residual Networks) with MXNet

Reproduce ResNet-v2 using MXNet Requirements Install MXNet on a machine with CUDA GPU, and it's better also installed with cuDNN v5 Please fix the ran

NFT-Price-Prediction-CNN - Using visual feature extraction, prices of NFTs are predicted via CNN (Alexnet and Resnet) architectures.

NFT-Price-Prediction-CNN - Using visual feature extraction, prices of NFTs are predicted via CNN (Alexnet and Resnet) architectures.

In this project we use both Resnet and Self-attention layer for cat, dog and flower classification.
In this project we use both Resnet and Self-attention layer for cat, dog and flower classification.

cdf_att_classification classes = {0: 'cat', 1: 'dog', 2: 'flower'} In this project we use both Resnet and Self-attention layer for cdf-Classification.

Comments
  • Expected top-1 test accuracy

    Expected top-1 test accuracy

    Hi

    This is a fantastic project! The released checkpoints are super helpful!

    I am wondering what's the top-1 test accuracy that one should get using the released ResNet-50 checkpoints. I am able to reach 0.749 using the my own ImageNet dataloader implemented via Tensorflow Datasets. Is the number close to your results?

    BTW, it would also be very helpful if you could release your training and dataloading code for these models!

    Thanks,

    opened by xidulu 2
  • Fitting issue

    Fitting issue

    I was trying to use a few of your pre-trained models, in particular the ResNet50 and VGG16 for features extraction, but unfortunately I didn't manage to fit on the Nvidia Titan X with 12GB of VRAM my question is which GPU did you use for training, how much VRAM I need for use them?

    For the VGG16 the system was asking me for 4 more GB and for the ResNet50 about 20 more

    Thanks.

    opened by mattiadutto 1
Owner
Alper Baris CELIK
Alper Baris CELIK
Residual Pathway Priors for Soft Equivariance Constraints

Residual Pathway Priors for Soft Equivariance Constraints This repo contains the implementation and the experiments for the paper Residual Pathway Pri

Marc Finzi 13 Oct 12, 2022
[3DV 2021] Channel-Wise Attention-Based Network for Self-Supervised Monocular Depth Estimation

Channel-Wise Attention-Based Network for Self-Supervised Monocular Depth Estimation This is the official implementation for the method described in Ch

Jiaxing Yan 27 Dec 30, 2022
This is the code used in the paper "Entity Embeddings of Categorical Variables".

This is the code used in the paper "Entity Embeddings of Categorical Variables". If you want to get the original version of the code used for the Kagg

Cheng Guo 845 Nov 29, 2022
Discovering Interpretable GAN Controls [NeurIPS 2020]

GANSpace: Discovering Interpretable GAN Controls Figure 1: Sequences of image edits performed using control discovered with our method, applied to thr

Erik Härkönen 1.7k Jan 03, 2023
Adaptation through prediction: multisensory active inference torque control

Adaptation through prediction: multisensory active inference torque control Submitted to IEEE Transactions on Cognitive and Developmental Systems Abst

Cristian Meo 1 Nov 07, 2022
Asterisk is a framework to generate high-quality training datasets at scale

Asterisk is a framework to generate high-quality training datasets at scale

Mona Nashaat 44 Apr 25, 2022
Code for MSc Quantitative Finance Dissertation

MSc Dissertation Code ReadMe Sector Volatility Prediction Performance Using GARCH Models and Artificial Neural Networks Curtis Nybo MSc Quantitative F

2 Dec 01, 2022
Speech recognition tool to convert audio to text transcripts, for Linux and Raspberry Pi.

Spchcat Speech recognition tool to convert audio to text transcripts, for Linux and Raspberry Pi. Description spchcat is a command-line tool that read

Pete Warden 279 Jan 03, 2023
A custom-designed Spider Robot trained to walk using Deep RL in a PyBullet Simulation

SpiderBot_DeepRL Title: Implementation of Single and Multi-Agent Deep Reinforcement Learning Algorithms for a Walking Spider Robot Authors(s): Arijit

Arijit Dasgupta 9 Jul 28, 2022
LineBoard - Python+React+MySQL-白板即時系統改善人群行為

LineBoard-白板即時系統改善人群行為 即時顯示實驗室的使用狀況,並遠端預約排隊,以此來改善人們的工作效率 程式架構 運作流程 使用者先至該實驗室網站預約

Bo-Jyun Huang 1 Feb 22, 2022
A 3D sparse LBM solver implemented using Taichi

taichi_LBM3D Background Taichi_LBM3D is a 3D lattice Boltzmann solver with Multi-Relaxation-Time collision scheme and sparse storage structure impleme

Jianhui Yang 121 Jan 06, 2023
PyTorch implementation of SimCLR: A Simple Framework for Contrastive Learning of Visual Representations

PyTorch implementation of SimCLR: A Simple Framework for Contrastive Learning of Visual Representations

Thalles Silva 1.7k Dec 28, 2022
CARLA: A Python Library to Benchmark Algorithmic Recourse and Counterfactual Explanation Algorithms

CARLA - Counterfactual And Recourse Library CARLA is a python library to benchmark counterfactual explanation and recourse models. It comes out-of-the

Carla Recourse 200 Dec 28, 2022
Ensemble Visual-Inertial Odometry (EnVIO)

Ensemble Visual-Inertial Odometry (EnVIO) Authors : Jae Hyung Jung, Yeongkwon Choe, and Chan Gook Park 1. Overview This is a ROS package of Ensemble V

Jae Hyung Jung 95 Jan 03, 2023
The source code for CATSETMAT: Cross Attention for Set Matching in Bipartite Hypergraphs

catsetmat The source code for CATSETMAT: Cross Attention for Set Matching in Bipartite Hypergraphs To be able to run it, add catsetmat to PYTHONPATH H

2 Dec 19, 2022
Combinatorial model of ligand-receptor binding

Combinatorial model of ligand-receptor binding The binding of ligands to receptors is the starting point for many import signal pathways within a cell

Mobolaji Williams 0 Jan 09, 2022
A complete speech segmentation system using Kaldi and x-vectors for voice activity detection (VAD) and speaker diarisation.

bbc-speech-segmenter: Voice Activity Detection & Speaker Diarization A complete speech segmentation system using Kaldi and x-vectors for voice activit

BBC 16 Oct 27, 2022
Repo for our ICML21 paper Unsupervised Learning of Visual 3D Keypoints for Control

Unsupervised Learning of Visual 3D Keypoints for Control [Project Website] [Paper] Boyuan Chen1, Pieter Abbeel1, Deepak Pathak2 1UC Berkeley 2Carnegie

Boyuan Chen 34 Jul 22, 2022
Source code of D-HAN: Dynamic News Recommendation with Hierarchical Attention Network

D-HAN The source code of D-HAN This is the source code of D-HAN: Dynamic News Recommendation with Hierarchical Attention Network. However, only the co

30 Sep 22, 2022
A set of simple scripts to process the Imagenet-1K dataset as TFRecords and make index files for NVIDIA DALI.

Overview This is a set of simple scripts to process the Imagenet-1K dataset as TFRecords and make index files for NVIDIA DALI. Make TFRecords To run t

8 Nov 01, 2022