SimCSE: Simple Contrastive Learning of Sentence Embeddings

Overview

SimCSE: Simple Contrastive Learning of Sentence Embeddings

This repository contains the code and pre-trained models for our paper SimCSE: Simple Contrastive Learning of Sentence Embeddings.

**************************** Updates ****************************

Quick links

Overview

We propose a simple contrastive learning framework that works with both unlabeled and labeled data. Unsupervised SimCSE simply takes an input sentence and predicts itself in a contrastive learning framework, with only standard dropout used as noise. Our supervised SimCSE incorporates annotated pairs from NLI datasets into contrastive learning by using entailment pairs as positives and contradiction pairs as hard negatives. The following figure is an illustration of our models.

Use our models out of the box

Our pre-trained models are now publicly available with HuggingFace's Transformers. Models and their performance are presented as follows:

Model Avg. STS
unsup-simcse-bert-base-uncased 74.54
unsup-simcse-bert-large-uncased 76.05
unsup-simcse-roberta-base 76.50
unsup-simcse-roberta-large 77.47
sup-simcse-bert-base-uncased 81.57
sup-simcse-bert-large-uncased 82.21
sup-simcse-roberta-base 82.52
sup-simcse-roberta-large 83.76

Naming rules: unsup and sup represent "unsupervised" (trained on Wikipedia corpus) and "supervised" (trained on NLI datasets) respectively.

You can easily import our model in an out-of-the-box way with HuggingFace's API:

import torch
from scipy.spatial.distance import cosine
from transformers import AutoModel, AutoTokenizer

# Import our models. The package will take care of downloading the models automatically
tokenizer = AutoTokenizer.from_pretrained("princeton-nlp/sup-simcse-bert-base-uncased")
model = AutoModel.from_pretrained("princeton-nlp/sup-simcse-bert-base-uncased")

# Tokenize input texts
texts = [
    "There's a kid on a skateboard.",
    "A kid is skateboarding.",
    "A kid is inside the house."
]
inputs = tokenizer(texts, padding=True, truncation=True, return_tensors="pt")

# Get the embeddings
with torch.no_grad():
    embeddings = model(**inputs,output_hidden_states=True, return_dict=True).pooler_output

# Calculate cosine similarities
# Cosine similarities are in [-1, 1]. Higher means more similar
cosine_sim_0_1 = 1 - cosine(embeddings[0], embeddings[1])
cosine_sim_0_2 = 1 - cosine(embeddings[0], embeddings[2])

print("Cosine similarity between \"%s\" and \"%s\" is: %.3f" % (texts[0], texts[1], cosine_sim_0_1))
print("Cosine similarity between \"%s\" and \"%s\" is: %.3f" % (texts[0], texts[2], cosine_sim_0_2))

If you encounter any problem when directly loading the models by HuggingFace's API, you can also download the models manually from the above table and use model = AutoModel.from_pretrained({PATH TO THE DOWNLOAD MODEL}).

If you only want to use our models in an out-of-the-box way, just installing the latest version of torch, transformers and scipy is enough. If you want to use our training or evaluation code, see the requirement section below.

Requirements

First, install PyTorch by following the instructions from the official website. To faithfully reproduce our results, please use the correct 1.7.1 version corresponding to your platforms/CUDA versions. PyTorch version higher than 1.7.1 should also work. For example, if you use Linux and CUDA11 (how to check CUDA version), install PyTorch by the following command,

pip install torch==1.7.1+cu110 -f https://download.pytorch.org/whl/torch_stable.html

If you instead use CUDA <11 or CPU, install PyTorch by the following command,

pip install torch==1.7.1

Then run the following script to install the remaining dependencies,

pip install -r requirements.txt

Evaluation

Our evaluation code for sentence embeddings is based on a modified version of SentEval. It evaluates sentence embeddings on semantic textual similarity (STS) tasks and downstream transfer tasks. For STS tasks, our evaluation takes the "all" setting, and report Spearman's correlation. See our paper (Appendix B) for evaluation details.

Before evaluation, please download the evaluation datasets by running

cd SentEval/data/downstream/
bash get_transfer_data.bash

Then come back to the root directory, you can evaluate any transformers-based pre-trained models using our evaluation code. For example,

python evaluation.py \
    --model_name_or_path princeton-nlp/sup-simcse-bert-base-uncased \
    --pooler cls \
    --task_set sts \
    --mode test

which is expected to output the results in a tabular format:

------ test ------
+-------+-------+-------+-------+-------+--------------+-----------------+-------+
| STS12 | STS13 | STS14 | STS15 | STS16 | STSBenchmark | SICKRelatedness |  Avg. |
+-------+-------+-------+-------+-------+--------------+-----------------+-------+
| 75.30 | 84.67 | 80.19 | 85.40 | 80.82 |    84.26     |      80.39      | 81.58 |
+-------+-------+-------+-------+-------+--------------+-----------------+-------+

Arguments for the evaluation script are as follows,

  • --model_name_or_path: The name or path of a transformers-based pre-trained checkpoint. You can directly use the models in the above table, e.g., princeton-nlp/sup-simcse-bert-base-uncased.
  • --pooler: Pooling method. Now we support
    • cls (default): Use the representation of [CLS] token. A linear+activation layer is applied after the representation (it's in the standard BERT implementation). If you use SimCSE, you should use this option.
    • cls_before_pooler: Use the representation of [CLS] token without the extra linear+activation.
    • avg: Average embeddings of the last layer. If you use checkpoints of SBERT/SRoBERTa (paper), you should use this option.
    • avg_top2: Average embeddings of the last two layers.
    • avg_first_last: Average embeddings of the first and last layers. If you use vanilla BERT or RoBERTa, this works the best.
  • --mode: Evaluation mode
    • test (default): The default test mode. To faithfully reproduce our results, you should use this option.
    • dev: Report the development set results. Note that in STS tasks, only STS-B and SICK-R have development sets, so we only report their numbers. It also takes a fast mode for transfer tasks, so the running time is much shorter than the test mode (though numbers are slightly lower).
    • fasttest: It is the same as test, but with a fast mode so the running time is much shorter, but the reported numbers may be lower (only for transfer tasks).
  • --task_set: What set of tasks to evaluate on (if set, it will override --tasks)
    • sts (default): Evaluate on STS tasks, including STS 12~16, STS-B and SICK-R. This is the most commonly-used set of tasks to evaluate the quality of sentence embeddings.
    • transfer: Evaluate on transfer tasks.
    • full: Evaluate on both STS and transfer tasks.
    • na: Manually set tasks by --tasks.
  • --tasks: Specify which dataset(s) to evaluate on. Will be overridden if --task_set is not na. See the code for a full list of tasks.

Training

Data

For unsupervised SimCSE, we sample 1 million sentences from English Wikipedia; for supervised SimCSE, we use the SNLI and MNLI datasets. You can run data/download_wiki.sh and data/download_nli.sh to download the two datasets.

Training scripts

We provide example training scripts for both unsupervised and supervised SimCSE. In run_unsup_example.sh, we provide a single-GPU (or CPU) example for the unsupervised version, and in run_sup_example.sh we give a multiple-GPU example for the supervised version. Both scripts call train.py for training. We explain the arguments in following:

  • --train_file: Training file path. We support "txt" files (one line for one sentence) and "csv" files (2-column: pair data with no hard negative; 3-column: pair data with one corresponding hard negative instance). You can use our provided Wikipedia or NLI data, or you can use your own data with the same format.
  • --model_name_or_path: Pre-trained checkpoints to start with. For now we support BERT-based models (bert-base-uncased, bert-large-uncased, etc.) and RoBERTa-based models (RoBERTa-base, RoBERTa-large, etc.).
  • --temp: Temperature for the contrastive loss.
  • --pooler_type: Pooling method. It's the same as the --pooler_type in the evaluation part.
  • --hard_negative_weight: If using hard negatives (i.e., there are 3 columns in the training file), this is the logarithm of the weight. For example, if the weight is 1, then this argument should be set as 0 (default value).
  • --do_mlm: Whether to use the MLM auxiliary objective. If True:
    • --mlm_weight: Weight for the MLM objective.
    • --mlm_probability: Masking rate for the MLM objective.

All the other arguments are standard Huggingface's transformers training arguments. Some of the often-used arguments are: --output_dir, --learning_rate, --per_device_train_batch_size. In our example scripts, we also set to evaluate the model on the STS-B development set (need to download the dataset following the evaluation section) and save the best checkpoint.

REPRODUCTION: For results in the paper, we use Nvidia 3090 GPUs with CUDA 11. Using different types of devices or different versions of CUDA/other softwares may lead to slightly different performance.

Convert models

IMPORTANT: Our saved checkpoints are slightly different from Huggingface's pre-trained checkpoints. Run python simcse_to_huggingface.py --path {PATH_TO_CHECKPOINT_FOLDER} to convert it. After that, you can evaluate it by our evaluation code or directly use it out of the box.

Bugs or questions?

If you have any questions related to the code or the paper, feel free to email Tianyu ([email protected]) and Xingcheng ([email protected]). If you encounter any problems when using the code, or want to report a bug, you can open an issue. Please try to specify the problem with details so we can help you better and quicker!

Citation

Please cite our paper if you use SimCSE in your work:

@article{gao2021simcse,
   title={{SimCSE}: Simple Contrastive Learning of Sentence Embeddings},
   author={Gao, Tianyu and Yao, Xingcheng and Chen, Danqi},
   journal={arXiv preprint arXiv:2104.08821},
   year={2021}
}
Comments
  • Troubles reproducing the results

    Troubles reproducing the results

    Hi, folks! Thank you very much for the hard work (^^) I have a question on how to reproduce the results -- not that I am aiming to spot the differences, just making sure that I am running the code correctly.

    I use the run_run_unsup_example.sh script to train the unsupervised SimCSE. At the end of the training procedure, I run evaluation as follows: time CUDA_VISIBLE_DEVICES=0 python evaluation.py --model_name_or_path result/my-unsup-simcse-bert-base-uncased --pooler cls --task_set sts --mode test. The results table I am getting is:

    ------ test ------
    +-------+-------+-------+-------+-------+--------------+-----------------+-------+
    | STS12 | STS13 | STS14 | STS15 | STS16 | STSBenchmark | SICKRelatedness |  Avg. |
    +-------+-------+-------+-------+-------+--------------+-----------------+-------+
    | 46.88 | 56.47 | 58.33 | 65.43 | 58.92 |    56.71     |      55.36      | 56.87 |
    +-------+-------+-------+-------+-------+--------------+-----------------+-------+
    

    I believe the table i should be comparing to is Table 5 from the paper, the relevant row shows:

    ∗SimCSE-BERTbase | 68.40 | 82.41 | 74.38 | 80.91 | 78.56 | 76.85 | 72.23 | 76.25|
    

    Which is far better than what i get. Can you maybe help me understand if I am doing smth wrong? I follow the main README.md file, the content of the run_run_unsup_example.sh script is:

    python train.py \
        --model_name_or_path bert-base-uncased \
        --train_file data/wiki1m_for_simcse.txt \
        --output_dir result/my-unsup-simcse-bert-base-uncased \
        --num_train_epochs 1 \
        --per_device_train_batch_size 64 \
        --learning_rate 3e-5 \
        --max_seq_length 32 \
        --evaluation_strategy steps \
        --metric_for_best_model stsb_spearman \
        --load_best_model_at_end \
        --eval_steps 125 \
        --pooler_type cls \
        --mlp_only_train \
        --overwrite_output_dir \
        --temp 0.05 \
        --do_train \
        --do_eval \
        --fp16 \
        "$@"
    
    opened by ypuzikov 17
  • No attribute validation_file in train.py?

    No attribute validation_file in train.py?

    os.system(f'bash ./data/download_nli.sh')
    os.system(
        'cd SimCSE;'
        'python train.py '
        '--model_name_or_path bert-base-uncased'
        '--train_file data/nli_for_simcse.csv '
        '--output_dir result/my-sup-simcse-bert-base-uncased '   
        '--num_train_epochs 3 '
        '--per_device_train_batch_size 128 '
        '--learning_rate 5e-5 '
        '--max_seq_length 32 '
        '--evaluation_strategy steps '
        '--metric_for_best_model stsb_spearman '
        '--load_best_model_at_end '
        '--eval_steps 125 '
        '--pooler_type cls '
        '--overwrite_output_dir '
        '--temp 0.05 '
        '--do_train '
        '--do_eval '
        '--fp16 '
        '"$@"'
    )
    
    Traceback (most recent call last):
      File "/Users/sumner/Downloads/Replication/SimCSE/train.py", line 584, in <module>
        main()
      File "/Users/sumner/Downloads/Replication/SimCSE/train.py", line 257, in main
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()
      File "/Users/sumner/miniforge3/lib/python3.9/site-packages/transformers/hf_argparser.py", line 157, in parse_args_into_dataclasses
        obj = dtype(**inputs)
      File "<string>", line 12, in __init__
      File "/Users/sumner/Downloads/Replication/SimCSE/train.py", line 179, in __post_init__
        if self.dataset_name is None and self.train_file is None and self.validation_file is None:
    AttributeError: 'DataTrainingArguments' object has no attribute 'validation_file'
    
    opened by SumNeuron 9
  • Cannot reproduce the result~

    Cannot reproduce the result~

    Hello, and thank you for this useful code! I tried to reproduce the unsupervisd BERT+SimCSE results, but failed. My environment setup is as follows:

    pytorch=1.7.1 cudatoolkit=11.1 Single RTX 3090 The following script is the training script I used (exactly the same as run_unsup_example.sh).

    python train.py
    --model_name_or_path bert-base-uncased
    --train_file data/wiki1m_for_simcse.txt
    --output_dir result/my-unsup-simcse-bert-base-uncased
    --num_train_epochs 1
    --per_device_train_batch_size 64
    --learning_rate 3e-5
    --max_seq_length 32
    --evaluation_strategy steps
    --metric_for_best_model stsb_spearman
    --load_best_model_at_end
    --eval_steps 125
    --pooler_type cls
    --mlp_only_train
    --overwrite_output_dir
    --temp 0.05
    --do_train
    --do_eval
    --fp16
    "$@" However, there is a runtimeerror when training is finished. I obtained following evaluation results:

    +-------+-------+-------+-------+-------+--------------+-----------------+-------+ | STS12 | STS13 | STS14 | STS15 | STS16 | STSBenchmark | SICKRelatedness | Avg. | +-------+-------+-------+-------+-------+--------------+-----------------+-------+ | 64.28 | 79.15 | 70.99 | 78.38 | 78.26 | 75.62 | 67.58 | 73.47 | +-------+-------+-------+-------+-------+--------------+-----------------+-------+

    I think the gap (2.8 in average) is too large. Is it because of the error? How to obtain ~76 results in STS tasks?

    opened by liuh236 9
  • Invalid tensor shape

    Invalid tensor shape

    I keep getting the following error at the end of the first epoch: "RuntimeError: Input tensor at index 1 has invalid shape [22, 44], but expected [22, 46]". This happens on a custom dataset. However, the dataset is thoroughly cleaned and should be valid.

    The error happens in: comm.py, line 231

    Any idea what might be causing this?

    opened by peregilk 8
  • Geting different testing resutls in different testing time

    Geting different testing resutls in different testing time

    Thanks for your great works. We want to train a simcse-bert-base model. We have tested the trained model two times and get different testing results with the following scripts, python evaluation.py --model_name_or_path result/my-unsup-simcse-bert-base-uncased

    1st results image 2nd results image

    The python packages

    (simcse) H:\contrast\SimCSE-main\SimCSE-main>pip freeze
    analytics-python==1.4.0
    apex==0.1
    backoff==1.10.0
    bcrypt==3.2.0
    certifi==2021.5.30
    cffi==1.14.6
    charset-normalizer==2.0.6
    click==8.0.1
    colorama==0.4.4
    cryptography==3.4.8
    cycler==0.10.0
    datasets==1.4.0
    dill==0.3.4
    ffmpy==0.3.0
    filelock==3.1.0
    Flask==2.0.1
    Flask-CacheBuster==1.0.0
    Flask-Cors==3.0.10
    Flask-Login==0.5.0
    fsspec==2021.10.0
    gradio==2.3.6
    huggingface-hub==0.0.2
    idna==3.2
    importlib-metadata==4.8.1
    itsdangerous==2.0.1
    Jinja2==3.0.1
    joblib==1.0.1
    kiwisolver==1.3.2
    markdown2==2.4.1
    MarkupSafe==2.0.1
    matplotlib==3.4.3
    monotonic==1.6
    multiprocess==0.70.12.2
    numpy==1.21.2
    packaging==21.0
    pandas==1.1.5
    paramiko==2.7.2
    Pillow==8.3.2
    prettytable==2.1.0
    pyarrow==5.0.0
    pycparser==2.20
    pycryptodome==3.10.4
    PyNaCl==1.4.0
    pyparsing==2.4.7
    python-dateutil==2.8.2
    pytz==2021.1
    PyYAML==5.4.1
    regex==2021.9.24
    requests==2.26.0
    sacremoses==0.0.46
    scikit-learn==0.24.0
    scipy==1.5.4
    six==1.16.0
    threadpoolctl==2.2.0
    tokenizers==0.9.4
    torch==1.9.1+cu102
    torchaudio==0.9.1
    torchvision==0.10.1+cu102
    tqdm==4.49.0
    transformers==4.2.1
    typing-extensions==3.10.0.2
    urllib3==1.26.7
    wcwidth==0.2.5
    Werkzeug==2.0.1
    wincertstore==0.2
    xxhash==2.0.2
    zipp==3.5.0
    
    
    opened by marscrazy 8
  • Why the max_sequence_length is just 32

    Why the max_sequence_length is just 32

    Hello, I noticed that the max_sequence_length in your code is set to 32. But the number of tokens of most of sentences in Eng WIKI exceed 32. Why the max sequence_length is 32? Thank you

    opened by leoozy 8
  • error when training unsupverised simcse

    error when training unsupverised simcse

    When i run run_unsup_example.sh and when i almost finished training, an error happend:

    Traceback (most recent call last): File "train.py", line 584, in main() File "train.py", line 548, in main train_result = trainer.train(model_path=model_path) File "/home/v-nuochen/SimCSE/simcse/trainers.py", line 464, in train tr_loss += self.training_step(model, inputs) File "/home/v-nuochen/.local/lib/python3.6/site-packages/transformers/trainer.py", line 1248, in training_step loss = self.compute_loss(model, inputs) File "/home/v-nuochen/.local/lib/python3.6/site-packages/transformers/trainer.py", line 1277, in compute_loss outputs = model(**inputs) File "/home/v-nuochen/.local/lib/python3.6/site-packages/torch/nn/modules/module.py", line 727, in _call_impl result = self.forward(*input, **kwargs) File "/home/v-nuochen/.local/lib/python3.6/site-packages/torch/nn/parallel/data_parallel.py", line 162, in forward return self.gather(outputs, self.output_device) File "/home/v-nuochen/.local/lib/python3.6/site-packages/torch/nn/parallel/data_parallel.py", line 174, in gather return gather(outputs, output_device, dim=self.dim) File "/home/v-nuochen/.local/lib/python3.6/site-packages/torch/nn/parallel/scatter_gather.py", line 68, in gather res = gather_map(outputs) File "/home/v-nuochen/.local/lib/python3.6/site-packages/torch/nn/parallel/scatter_gather.py", line 62, in gather_map for k in out)) File "", line 6, in init File "/home/v-nuochen/.local/lib/python3.6/site-packages/transformers/file_utils.py", line 1383, in post_init for element in iterator: File "/home/v-nuochen/.local/lib/python3.6/site-packages/torch/nn/parallel/scatter_gather.py", line 62, in for k in out)) File "/home/v-nuochen/.local/lib/python3.6/site-packages/torch/nn/parallel/scatter_gather.py", line 55, in gather_map return Gather.apply(target_device, dim, *outputs) File "/home/v-nuochen/.local/lib/python3.6/site-packages/torch/nn/parallel/_functions.py", line 71, in forward return comm.gather(inputs, ctx.dim, ctx.target_device) File "/home/v-nuochen/.local/lib/python3.6/site-packages/torch/nn/parallel/comm.py", line 230, in gather return torch._C._gather(tensors, dim, destination)

    RuntimeError: Input tensor at index 7 has invalid shape [2, 2], but expected [2, 9] 100%|█████████████████████████████████████████████████████████████████████████████████▉| 1953/1954 [18:36<00:00, 1.75it/s]

    Could you please tell me why?

    opened by cn-boop 8
  • Error while computing cosine similarity

    Error while computing cosine similarity

    Hello! I get the following error when comparing one sentence vs many others using similarities = model.similarity(keyword, phrases) the model loaded is model = SimCSE("princeton-nlp/sup-simcse-bert-base-uncased")

    ` ~\AppData\Roaming\Python\Python38\site-packages\simcse\tool.py in similarity(self, queries, keys, device) 110 111 # returns an N*M similarity array --> 112 similarities = cosine_similarity(query_vecs, key_vecs) 113 114 if single_query:

    ~\anaconda3\lib\site-packages\sklearn\metrics\pairwise.py in cosine_similarity(X, Y, dense_output) 1178 # to avoid recursive import 1179 -> 1180 X, Y = check_pairwise_arrays(X, Y) 1181 1182 X_normalized = normalize(X, copy=True)

    ~\anaconda3\lib\site-packages\sklearn\utils\validation.py in inner_f(*args, **kwargs) 61 extra_args = len(args) - len(all_args) 62 if extra_args <= 0: ---> 63 return f(*args, **kwargs) 64 65 # extra_args > 0

    ~\anaconda3\lib\site-packages\sklearn\metrics\pairwise.py in check_pairwise_arrays(X, Y, precomputed, dtype, accept_sparse, force_all_finite, copy) 147 copy=copy, force_all_finite=force_all_finite, 148 estimator=estimator) --> 149 Y = check_array(Y, accept_sparse=accept_sparse, dtype=dtype, 150 copy=copy, force_all_finite=force_all_finite, 151 estimator=estimator)

    ~\anaconda3\lib\site-packages\sklearn\utils\validation.py in inner_f(*args, **kwargs) 61 extra_args = len(args) - len(all_args) 62 if extra_args <= 0: ---> 63 return f(*args, **kwargs) 64 65 # extra_args > 0

    ~\anaconda3\lib\site-packages\sklearn\utils\validation.py in check_array(array, accept_sparse, accept_large_sparse, dtype, order, copy, force_all_finite, ensure_2d, allow_nd, ensure_min_samples, ensure_min_features, estimator) 671 array = array.astype(dtype, casting="unsafe", copy=False) 672 else: --> 673 array = np.asarray(array, order=order, dtype=dtype) 674 except ComplexWarning as complex_warning: 675 raise ValueError("Complex data not supported\n"

    ValueError: could not convert string to float:`

    opened by gaurav-95 7
  • The alignment computed with function implemented by Wang and Isola differs a lot with the paper

    The alignment computed with function implemented by Wang and Isola differs a lot with the paper

    The alignment computed with the function implemented by Wang and Isola differs link a lot with your paper. I compute the alignment by that function directly, and I get a score of 1.21. But as shown in Fig.3 the score of the paper is less than 0.25. Could you tell me how to compute the alignment in this paper? My code is as follows:

    def align_loss(x, y, alpha=2):    
        return (x - y).norm(p=2, dim=1).pow(alpha).mean()
    
    def uniform_loss(x, t=2):
        return torch.pdist(x, p=2).pow(2).mul(-t).exp().mean().log()
    
    def get_pair_emb(model, input_ids, attention_mask,token_type_ids):
        outputs = model(input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids)
        pooler_output = outputs.pooler_output
        pooler_output = pooler_output.view((batch_size, 2, pooler_output.size(-1)))
        z1, z2 = pooler_output[:,0], pooler_output[:,1]
        return z1,z2
    
    def get_align(model, dataloader):
        align_all = []
        unif_all = []
        with torch.no_grad():        
            for data in dataloader:
                input_ids = torch.cat((data['input_ids'][0],data['input_ids'][1])).cuda()
                attention_mask = torch.cat((data['attention_mask'][0],data['attention_mask'][1])).cuda()
                token_type_ids = torch.cat((data['token_type_ids'][0],data['token_type_ids'][1])).cuda()
    
                z1,z2 = get_pair_emb(model, input_ids, attention_mask, token_type_ids)        
                z1 = F.normalize(z1,p=2,dim=1)
                z2 = F.normalize(z2,p=2,dim=1)
    
                align_all.append(align_loss(z1, z2, alpha=2))
                
        return align_all
    
    def get_unif(model, dataloader):
        unif_all = []
        with torch.no_grad():        
            for data in dataloader:
                input_ids = torch.cat((data['input_ids'][0],data['input_ids'][1])).cuda()
                attention_mask = torch.cat((data['attention_mask'][0],data['attention_mask'][1])).cuda()
                token_type_ids = torch.cat((data['token_type_ids'][0],data['token_type_ids'][1])).cuda()
    
                z1,z2 = get_pair_emb(model, input_ids, attention_mask, token_type_ids)        
                z1 = F.normalize(z1,p=2,dim=1)
                z2 = F.normalize(z2,p=2,dim=1)
                z = torch.cat((z1,z2))
                unif_all.append(uniform_loss(z, t=2))
    
        return unif_all
    
    
    
    model = AutoModel.from_pretrained("princeton-nlp/unsup-simcse-bert-base-uncased")
    model = model.cuda()
    model_name = "unsup-simcse-bert-base-uncased"
    
    align_all = get_align(model, pos_loader)
    
    align = sum(align_all)/len(align_all)
    
    
    opened by xbdxwyh 7
  • Error when I run unsupervised:RuntimeError: Input tensor at index 1 has invalid shape [32, 32], but expected [32, 33]

    Error when I run unsupervised:RuntimeError: Input tensor at index 1 has invalid shape [32, 32], but expected [32, 33]

    File "train.py", line 591, in main() File "train.py", line 555, in main train_result = trainer.train(model_path=model_path) File "/mnt/data/data/home/zhanghaoran/learn_project/SimCSE-main/simcse/trainers.py", line 464, in train tr_loss += self.training_step(model, inputs) File "/mnt/data/data/home/zhanghaoran/.conda/envs/simcse/lib/python3.8/site-packages/transformers/trainer.py", line 1248, in training_step loss = self.compute_loss(model, inputs) File "/mnt/data/data/home/zhanghaoran/.conda/envs/simcse/lib/python3.8/site-packages/transformers/trainer.py", line 1277, in compute_loss outputs = model(**inputs) File "/mnt/data/data/home/zhanghaoran/.conda/envs/simcse/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1110, in _call_impl return forward_call(*input, **kwargs) File "/mnt/data/data/home/zhanghaoran/.conda/envs/simcse/lib/python3.8/site-packages/torch/nn/parallel/data_parallel.py", line 169, in forward return self.gather(outputs, self.output_device) File "/mnt/data/data/home/zhanghaoran/.conda/envs/simcse/lib/python3.8/site-packages/torch/nn/parallel/data_parallel.py", line 181, in gather return gather(outputs, output_device, dim=self.dim) File "/mnt/data/data/home/zhanghaoran/.conda/envs/simcse/lib/python3.8/site-packages/torch/nn/parallel/scatter_gather.py", line 78, in gather res = gather_map(outputs) File "/mnt/data/data/home/zhanghaoran/.conda/envs/simcse/lib/python3.8/site-packages/torch/nn/parallel/scatter_gather.py", line 69, in gather_map return type(out)((k, gather_map([d[k] for d in outputs])) File "", line 7, in init File "/mnt/data/data/home/zhanghaoran/.conda/envs/simcse/lib/python3.8/site-packages/transformers/file_utils.py", line 1383, in post_init for element in iterator: File "/mnt/data/data/home/zhanghaoran/.conda/envs/simcse/lib/python3.8/site-packages/torch/nn/parallel/scatter_gather.py", line 69, in return type(out)((k, gather_map([d[k] for d in outputs])) File "/mnt/data/data/home/zhanghaoran/.conda/envs/simcse/lib/python3.8/site-packages/torch/nn/parallel/scatter_gather.py", line 63, in gather_map return Gather.apply(target_device, dim, *outputs) File "/mnt/data/data/home/zhanghaoran/.conda/envs/simcse/lib/python3.8/site-packages/torch/nn/parallel/_functions.py", line 75, in forward return comm.gather(inputs, ctx.dim, ctx.target_device) File "/mnt/data/data/home/zhanghaoran/.conda/envs/simcse/lib/python3.8/site-packages/torch/nn/parallel/comm.py", line 235, in gather return torch._C._gather(tensors, dim, destination) RuntimeError: Input tensor at index 1 has invalid shape [32, 32], but expected [32, 33]

    opened by xing-ye 6
  • computing alignment and uniformity

    computing alignment and uniformity

    I'm following Wang and Isola to compute alignment and uniformity (using their given code in Fig 5, http://proceedings.mlr.press/v119/wang20k/wang20k.pdf) to reproduce Fig 2 in your paper but fail. What I saw is that the alignment decreases whereas the uniformity is almost unchanged, which is completely different from Fig 2. Details are below.

    To compute alignment and uniformity, I changed line 66-79 file SimCSE/blob/main/SentEval/senteval/sts.py by adding the code from Wang and Isola:

                ...
                input1, input2, gs_scores = self.data[dataset]
                all_enc1 = []
                all_enc2 = []
                for ii in range(0, len(gs_scores), params.batch_size):
                    batch1 = input1[ii:ii + params.batch_size]
                    batch2 = input2[ii:ii + params.batch_size]
    
                    # we assume get_batch already throws out the faulty ones
                    if len(batch1) == len(batch2) and len(batch1) > 0:
                        enc1 = batcher(params, batch1)
                        enc2 = batcher(params, batch2)
    
                        all_enc1.append(enc1.detach())
                        all_enc2.append(enc2.detach())
                        ...
                
                 def _norm(x, eps=1e-8): 
                    xnorm = torch.linalg.norm(x, dim=-1)
                    xnorm = torch.max(xnorm, torch.ones_like(xnorm) * eps)
                    return x / xnorm.unsqueeze(dim=-1)
    
                # from Wang and Isola (with a bit of modification)
                # only consider pairs with gs > 4 (from footnote 3)
                def _lalign(x, y, ok, alpha=2):
                    return ((_norm(x) - _norm(y)).norm(dim=1).pow(alpha) * ok).sum() / ok.sum()
                
                def _lunif(x, t=2):
                    sq_pdist = torch.pdist(_norm(x), p=2).pow(2)
                    return sq_pdist.mul(-t).exp().mean().log()
    
                ok = (torch.Tensor(gs_scores) > 4).int()
                align = _lalign(
                    torch.cat(all_enc1), 
                    torch.cat(all_enc2), 
                    ok).item()
    
                # consider all sentences (from footnote 3)
                unif = _lunif(torch.cat(all_enc1 + all_enc2)).item()
                logging.info(f'align {align}\t\t uniform {unif}')
    
    

    The output (which also shows spearman on stsb dev set) is

    align 0.2672557830810547 uniform -2.5320491790771484 'eval_stsb_spearman': 0.6410360622426501, 'epoch': 0.01
    align 0.2519586384296417 uniform -2.629746913909912 'eval_stsb_spearman': 0.6859433315879646, 'epoch': 0.02
    align 0.2449202835559845 uniform -2.5870673656463623 'eval_stsb_spearman': 0.7198291431689111, 'epoch': 0.02
    align 0.22248655557632446 uniform -2.557053565979004 'eval_stsb_spearman': 0.7538674335025006, 'epoch': 0.03
    align 0.22624073922634125 uniform -2.6622540950775146 'eval_stsb_spearman': 0.7739112284380941, 'epoch': 0.04
    align 0.22583454847335815 uniform -2.5768041610717773 'eval_stsb_spearman': 0.7459814500897265, 'epoch': 0.05
    align 0.22845414280891418 uniform -2.5601420402526855 'eval_stsb_spearman': 0.7683573046863201, 'epoch': 0.06
    align 0.22689573466777802 uniform -2.560364007949829 'eval_stsb_spearman': 0.7766837072148098, 'epoch': 0.06
    align 0.22807720303535461 uniform -2.5539987087249756 'eval_stsb_spearman': 0.7692866256106997, 'epoch': 0.07
    align 0.20026598870754242 uniform -2.50628399848938 'eval_stsb_spearman': 0.7939010002048291, 'epoch': 0.08
    align 0.20466476678848267 uniform -2.535121440887451 'eval_stsb_spearman': 0.8011027122797894, 'epoch': 0.09
    align 0.2030458152294159 uniform -2.5547776222229004 'eval_stsb_spearman': 0.8044623693996088, 'epoch': 0.1
    align 0.20119303464889526 uniform -2.5325350761413574 'eval_stsb_spearman': 0.8070404405714893, 'epoch': 0.1
    align 0.19329915940761566 uniform -2.488903522491455 'eval_stsb_spearman': 0.8220311448535872, 'epoch': 0.11
    align 0.19556573033332825 uniform -2.5273373126983643 'eval_stsb_spearman': 0.8183500898254208, 'epoch': 0.12
    align 0.19112755358219147 uniform -2.4959402084350586 'eval_stsb_spearman': 0.8146496522216178, 'epoch': 0.13
    align 0.18491695821285248 uniform -2.4762508869171143 'eval_stsb_spearman': 0.8088527080054781, 'epoch': 0.14
    align 0.19815796613693237 uniform -2.5905373096466064 'eval_stsb_spearman': 0.8333401056438776, 'epoch': 0.14
    align 0.1950838416814804 uniform -2.4894299507141113 'eval_stsb_spearman': 0.8293951990138778, 'epoch': 0.15
    align 0.19777807593345642 uniform -2.5985066890716553 'eval_stsb_spearman': 0.8268435050866446, 'epoch': 0.16
    align 0.2016373723745346 uniform -2.616013765335083 'eval_stsb_spearman': 0.8199602019842832, 'epoch': 0.17
    align 0.19906719028949738 uniform -2.57528018951416 'eval_stsb_spearman': 0.8094202934650283, 'epoch': 0.18
    align 0.18731220066547394 uniform -2.517271041870117 'eval_stsb_spearman': 0.8231122818777513, 'epoch': 0.18
    align 0.18802008032798767 uniform -2.508246421813965 'eval_stsb_spearman': 0.8248523275594679, 'epoch': 0.19
    align 0.20015984773635864 uniform -2.4563515186309814 'eval_stsb_spearman': 0.8061084765791668, 'epoch': 0.2
    align 0.2015877515077591 uniform -2.5121841430664062 'eval_stsb_spearman': 0.8113328705761889, 'epoch': 0.21
    align 0.20187602937221527 uniform -2.5167288780212402 'eval_stsb_spearman': 0.8124173161634701, 'epoch': 0.22
    align 0.20096932351589203 uniform -2.5201926231384277 'eval_stsb_spearman': 0.8127754107163266, 'epoch': 0.22
    align 0.19966433942317963 uniform -2.5182201862335205 'eval_stsb_spearman': 0.8152261579570365, 'epoch': 0.23
    align 0.19897222518920898 uniform -2.557129383087158 'eval_stsb_spearman': 0.8169452712415308, 'epoch': 0.24
    ...
    

    We can see that alignment drops from 0.26 to less than 0.20 whereas uniformity is still around -2.55. It means that reducing alignment is key, not uniformity. This trend is completely different from Fig 2.

    Did you also use the code from Wang and Isola like I did? If possible, could you please provide the code for reproducing alignment and uniformity?

    opened by lephong 6
  • Why one epoch for unsupervised?

    Why one epoch for unsupervised?

    Hello,

    Thanks for your amazing work on SimCSE!

    I was wondering why only one epoch was chosen for unsupervised, while supervised approach does 3 epochs.

    What is the reason?

    Thanks in advance :)

    opened by jeongwoopark0514 0
  • what are the negative samples if removing the hard negative? (train with supervised verison)

    what are the negative samples if removing the hard negative? (train with supervised verison)

    Hi, I follow your supervised example, but remove the hard negative from the dataset, In this may, where does the negative sample come from? Does it take the other 'sent0's or 'sent1's in the same batch as the negative sample? Would you give me some instructions? thanks a lot!

    opened by Rachel-Yeah-Lee 0
  • Can't Install on Mac M1

    Can't Install on Mac M1

    Hi,

    I can't install SimCSE on my macbook pro because the version of scipy used as a dependency can't be installed on on M1, I think because it doesn't support ARM. Would it be possible to to change the scipy dependency to a newer version that does, or is there another workaround?

    Thanks, Shawn

    opened by shawnjhenry 1
Releases(0.4)
Owner
Princeton Natural Language Processing
Princeton Natural Language Processing
lightweight, fast and robust columnar dataframe for data analytics with online update

streamdf Streamdf is a lightweight data frame library built on top of the dictionary of numpy array, developed for Kaggle's time-series code competiti

23 May 19, 2022
2021搜狐校园文本匹配算法大赛baseline

sohu2021-baseline 2021搜狐校园文本匹配算法大赛baseline 简介 分享了一个搜狐文本匹配的baseline,主要是通过条件LayerNorm来增加模型的多样性,以实现同一模型处理不同类型的数据、形成不同输出的目的。 线下验证集F1约0.74,线上测试集F1约0.73。

苏剑林(Jianlin Su) 45 Sep 06, 2022
LewusBot - Twitch ChatBot built in python with twitchio library

LewusBot Twitch ChatBot built in python with twitchio library. Uses twitch/leagu

Lewus 25 Dec 04, 2022
Yet another Python binding for fastText

pyfasttext Warning! pyfasttext is no longer maintained: use the official Python binding from the fastText repository: https://github.com/facebookresea

Vincent Rasneur 230 Nov 16, 2022
Code for paper: An Effective, Robust and Fairness-awareHate Speech Detection Framework

BiQQLSTM_HS Code and data for paper: Title: An Effective, Robust and Fairness-awareHate Speech Detection Framework. Authors: Guanyi Mou and Kyumin Lee

Guanyi Mou 2 Dec 27, 2022
Code for Discovering Topics in Long-tailed Corpora with Causal Intervention.

Code for Discovering Topics in Long-tailed Corpora with Causal Intervention ACL2021 Findings Usage 0. Prepare environment Requirements: python==3.6 te

Xiaobao Wu 8 Dec 16, 2022
Multilingual Emotion classification using BERT (fine-tuning). Published at the WASSA workshop (ACL2022).

XLM-EMO: Multilingual Emotion Prediction in Social Media Text Abstract Detecting emotion in text allows social and computational scientists to study h

MilaNLP 35 Sep 17, 2022
Code for the paper "BERT Loses Patience: Fast and Robust Inference with Early Exit".

Patience-based Early Exit Code for the paper "BERT Loses Patience: Fast and Robust Inference with Early Exit". NEWS: We now have a better and tidier i

Kevin Canwen Xu 54 Jan 04, 2023
A script that automatically creates a branch name using google translation api and jira api

About google translation api와 jira api을 사용하여 자동으로 브랜치 이름을 만들어주는 스크립트 Setup 환경변수에 다음 3가지를 등록해야 한다. JIRA_USER : JIRA email (ex: hyunwook.kim 2 Dec 20, 2021

Korean stereoypte detector with TUNiB-Electra and K-StereoSet

Korean Stereotype Detector Korean stereotype sentence classifier using K-StereoSet with TUNiB-Electra Web demo you can test this model easily in demo

Sae_Chan_Oh 11 Feb 18, 2022
The official repository of the ISBI 2022 KNIGHT Challenge

KNIGHT The official repository holding the data for the ISBI 2022 KNIGHT Challenge About The KNIGHT Challenge asks teams to develop models to classify

Nicholas Heller 4 Jan 22, 2022
A full spaCy pipeline and models for scientific/biomedical documents.

This repository contains custom pipes and models related to using spaCy for scientific documents. In particular, there is a custom tokenizer that adds

AI2 1.3k Jan 03, 2023
Code for the Findings of NAACL 2022(Long Paper): AdapterBias: Parameter-efficient Token-dependent Representation Shift for Adapters in NLP Tasks

AdapterBias: Parameter-efficient Token-dependent Representation Shift for Adapters in NLP Tasks arXiv link: upcoming To be published in Findings of NA

Allen 16 Nov 12, 2022
Pervasive Attention: 2D Convolutional Networks for Sequence-to-Sequence Prediction

This is a fork of Fairseq(-py) with implementations of the following models: Pervasive Attention - 2D Convolutional Neural Networks for Sequence-to-Se

Maha 490 Dec 15, 2022
Simple python code to fix your combo list by removing any text after a separator or removing duplicate combos

Combo List Fixer A simple python code to fix your combo list by removing any text after a separator or removing duplicate combos Removing any text aft

Hamidreza Dehghan 3 Dec 05, 2022
Indonesia spellchecker with python

indonesia-spellchecker Ganti kata yang terdapat pada file teks.txt untuk diperiksa kebenaran kata. Run on local machine python3 main.py

Rahmat Agung Julians 1 Sep 14, 2022
Language Models as Zero-Shot Planners: Extracting Actionable Knowledge for Embodied Agents

Language Models as Zero-Shot Planners: Extracting Actionable Knowledge for Embodied Agents [Project Page] [Paper] [Video] Wenlong Huang1, Pieter Abbee

Wenlong Huang 114 Dec 29, 2022
The proliferation of disinformation across social media has led the application of deep learning techniques to detect fake news.

Fake News Detection Overview The proliferation of disinformation across social media has led the application of deep learning techniques to detect fak

Kushal Shingote 1 Feb 08, 2022
Tool to add main subject to items on Wikidata using a WMFs CirrusSearch for named entity recognition or a manually supplied list of QIDs

ItemSubjector Tool made to add main subject statements to items based on the title using a home-brewed CirrusSearch-based Named Entity Recognition alg

Dennis Priskorn 9 Nov 17, 2022
Ptorch NLU, a Chinese text classification and sequence annotation toolkit, supports multi class and multi label classification tasks of Chinese long text and short text, and supports sequence annotation tasks such as Chinese named entity recognition, part of speech tagging and word segmentation.

Pytorch-NLU,一个中文文本分类、序列标注工具包,支持中文长文本、短文本的多类、多标签分类任务,支持中文命名实体识别、词性标注、分词等序列标注任务。 Ptorch NLU, a Chinese text classification and sequence annotation toolkit, supports multi class and multi label classifi

186 Dec 24, 2022