This is the repository for our paper Ditch the Gold Standard: Re-evaluating Conversational Question Answering

Overview

Ditch the Gold Standard: Re-evaluating Conversational Question Answering

This is the repository for our paper Ditch the Gold Standard: Re-evaluating Conversational Question Answering.

Overview

In this work, we conduct the first large-scale human evaluation of state-of-the-art conversational QA systems. In our evaluation, human annotators chat with conversational QA models about passages from the QuAC development set, and after that the annotators judge the correctness of model answers. We release the human annotated dataset in the following section.

We also identify a critical issue with the current automatic evaluation, which pre-collectes human-human conversations and uses ground-truth answers as conversational history (differences between different evaluations are shown in the following figure). By comparison, we find that the automatic evaluation does not always agree with the human evaluation. We propose a new evaluation protocol that is based on predicted history and question rewriting. Our experiments show that the new protocol better reflects real-world performance compared to the original automatic evaluation. We also provide the new evaluation protocol code in the following.

Different evaluation protocols

Human Evaluation Dataset

You can download the human annotation dataset from data/human_annotation_data.json. The json file contains one data field data, which is a list of conversations. Each conversation contains the following fields:

  • model_name: The model evaluated. One of bert4quac, graphflow, ham, excord.
  • context: The passage used in this conversation.
  • dialog_id: The ID from the original QuAC dataset.
  • qas: The conversation, which contains a list of QA pairs. Each QA pair has the following fields:
    • turn_id: The number of turn.
    • question: The question from the human annotator.
    • answer: The answer from the model.
    • valid: Whether the question is valid (annotated by our human annotator).
    • answerable: Whether the question is answerable (annotated by our human annotator).
    • correct: Whether the model's answer is correct (annotated by our human annotator).

Automatic model evaluation interface

We provide a convenient interface to test model performance on a few evaluation protocols compared in our paper, including Auto-Pred, Auto-Replace and our proposed evaluation protocol, Auto-Rewrite, which better demonstrates models' performance in human-model conversations. Please refer to our paper for more details. Following is a figure describing how Auto-Rewrite works.

Auto-rewrite

To use our evaluation interface on your own model, follow the steps:

  • Step 1: Download the QuAC dataset.

  • Step 2: Install allennlp, allennlp_models, ncr.replace_corefs through pip if you would like to use Auto-Rewrite.

  • Step 3: Download the CANARD dataset and set --canard_path if you would like to use Auto-Replace.

  • Step 4: Write a model interface following the template interface.py. Explanations to each function are provided through in-line comments. Make sure to import all your model dependencies at the top.

  • Step 5: Add the model to the evaluation script run_quac_eval.py. Changes that are need to be made are marked with #TODO.

  • Step 6: Run evaluation script. See run.sh for reference. Explanations of all arguments are provided in run_quac_eval.py. Make sure to turn on only one of --pred, --rewrite or --replace.

Citation

@article{li2021ditch,
   title={Ditch the Gold Standard: Re-evaluating Conversational Question Answering},
   author={Li, Huihan and Gao, Tianyu and Goenka, Manan and Chen, Danqi},
   journal={arXiv preprint arXiv:2112.08812},
   year={2021}
}
Owner
Princeton Natural Language Processing
Princeton Natural Language Processing
A PyTorch implementation of "Capsule Graph Neural Network" (ICLR 2019).

CapsGNN ⠀⠀ A PyTorch implementation of Capsule Graph Neural Network (ICLR 2019). Abstract The high-quality node embeddings learned from the Graph Neur

Benedek Rozemberczki 1.2k Jan 02, 2023
PyTorch implementation of paper “Unbiased Scene Graph Generation from Biased Training”

A new codebase for popular Scene Graph Generation methods (2020). Visualization & Scene Graph Extraction on custom images/datasets are provided. It's also a PyTorch implementation of paper “Unbiased

Kaihua Tang 824 Jan 03, 2023
This project aims to segment 4 common retinal lesions from Fundus Images.

This project aims to segment 4 common retinal lesions from Fundus Images.

Husam Nujaim 1 Oct 10, 2021
NICE-GAN — Official PyTorch Implementation Reusing Discriminators for Encoding: Towards Unsupervised Image-to-Image Translation

NICE-GAN-pytorch - Official PyTorch implementation of NICE-GAN: Reusing Discriminators for Encoding: Towards Unsupervised Image-to-Image Translation

Runfa Chen 208 Nov 25, 2022
PyTorch version repo for CSRNet: Dilated Convolutional Neural Networks for Understanding the Highly Congested Scenes

Study-CSRNet-pytorch This is the PyTorch version repo for CSRNet: Dilated Convolutional Neural Networks for Understanding the Highly Congested Scenes

0 Mar 01, 2022
A Deep Learning Based Knowledge Extraction Toolkit for Knowledge Base Population

DeepKE is a knowledge extraction toolkit supporting low-resource and document-level scenarios for entity, relation and attribute extraction. We provide comprehensive documents, Google Colab tutorials

ZJUNLP 1.6k Jan 05, 2023
Certified Patch Robustness via Smoothed Vision Transformers

Certified Patch Robustness via Smoothed Vision Transformers This repository contains the code for replicating the results of our paper: Certified Patc

Madry Lab 35 Dec 14, 2022
Exadel CompreFace is a free and open-source face recognition GitHub project

Exadel CompreFace is a leading free and open-source face recognition system Exadel CompreFace is a free and open-source face recognition service that

Exadel 2.6k Jan 04, 2023
A simple rest api that classifies pneumonia infection weather it is Normal, Pneumonia Virus or Pneumonia Bacteria from a chest-x-ray image.

This is a simple rest api that classifies pneumonia infection weather it is Normal, Pneumonia Virus or Pneumonia Bacteria from a chest-x-ray image.

crispengari 3 Jan 08, 2022
End-to-End Object Detection with Fully Convolutional Network

This project provides an implementation for "End-to-End Object Detection with Fully Convolutional Network" on PyTorch.

472 Dec 22, 2022
Create and implement a deep learning library from scratch.

In this project, we create and implement a deep learning library from scratch. Table of Contents Deep Leaning Library Table of Contents About The Proj

Rishabh Bali 22 Aug 23, 2022
Codes for CyGen, the novel generative modeling framework proposed in "On the Generative Utility of Cyclic Conditionals" (NeurIPS-21)

On the Generative Utility of Cyclic Conditionals This repository is the official implementation of "On the Generative Utility of Cyclic Conditionals"

Chang Liu 44 Nov 16, 2022
Makes patches from huge resolution .svs slide files using openslide

openslide_patcher Makes patches from huge resolution .svs slide files using openslide Example collage I made from outputs:

2 Dec 23, 2021
Least Square Calibration for Peer Reviews

Least Square Calibration for Peer Reviews Requirements gurobipy - for solving convex programs GPy - for Bayesian baseline numpy pandas To generate p

Sigma <a href=[email protected]"> 1 Nov 01, 2021
Implementation of "Meta-rPPG: Remote Heart Rate Estimation Using a Transductive Meta-Learner"

Meta-rPPG: Remote Heart Rate Estimation Using a Transductive Meta-Learner This repository is the official implementation of Meta-rPPG: Remote Heart Ra

Eugene Lee 137 Dec 13, 2022
[ICCV 2021 Oral] PoinTr: Diverse Point Cloud Completion with Geometry-Aware Transformers

PoinTr: Diverse Point Cloud Completion with Geometry-Aware Transformers Created by Xumin Yu*, Yongming Rao*, Ziyi Wang, Zuyan Liu, Jiwen Lu, Jie Zhou

Xumin Yu 317 Dec 26, 2022
Implementation of "The Power of Scale for Parameter-Efficient Prompt Tuning"

Prompt-Tuning Implementation of "The Power of Scale for Parameter-Efficient Prompt Tuning" Currently, we support the following huggigface models: Bart

Andrew Zeng 36 Dec 19, 2022
A basic implementation of Layer-wise Relevance Propagation (LRP) in PyTorch.

Layer-wise Relevance Propagation (LRP) in PyTorch Basic unsupervised implementation of Layer-wise Relevance Propagation (Bach et al., Montavon et al.)

Kai Fabi 28 Dec 26, 2022
The repository offers the official implementation of our paper in PyTorch.

Cloth Interactive Transformer (CIT) Cloth Interactive Transformer for Virtual Try-On Bin Ren1, Hao Tang1, Fanyang Meng2, Runwei Ding3, Ling Shao4, Phi

Bingoren 49 Dec 01, 2022
GeoTransformer - Geometric Transformer for Fast and Robust Point Cloud Registration

Geometric Transformer for Fast and Robust Point Cloud Registration PyTorch imple

Zheng Qin 220 Jan 05, 2023