git《Tangent Space Backpropogation for 3D Transformation Groups》(CVPR 2021) GitHub:1]

Related tags

Deep Learninglietorch
Overview

LieTorch: Tangent Space Backpropagation

Introduction

The LieTorch library generalizes PyTorch to 3D transformation groups. Just as torch.Tensor is a multi-dimensional matrix of scalar elements, lietorch.SE3 is a multi-dimensional matrix of SE3 elements. We support common tensor manipulations such as indexing, reshaping, and broadcasting. Group operations can be composed into computation graphs and backpropagation is automatically peformed in the tangent space of each element. For more details, please see our paper:

Tangent Space Backpropagation for 3D Transformation Groups
Zachary Teed and Jia Deng, CVPR 2021

@inproceedings{teed2021tangent,
  title={Tangent Space Backpropagation for 3D Transformation Groups},
  author={Teed, Zachary and Deng, Jia},
  booktitle={Conference on Computer Vision and Pattern Recognition},
  year={2021},
}

Installation

Requirements:

  • Cuda >= 10.1 (with nvcc compiler)
  • PyTorch >= 1.6

We recommend installing within a virtual enviornment. Make sure you clone using the --recursive flag. If you are using Anaconda, the following command can be used to install all dependencies

git clone --recursive https://github.com/princeton-vl/lietorch.git
cd lietorch

conda create -n lie_env
conda activate lie_env
conda install scipy pyyaml pytorch torchvision torchaudio cudatoolkit=10.2 -c pytorch

To run the examples, you will need OpenCV and Open3D. Depending on your operating system, OpenCV and Open3D can either be installed with pip or may need to be built from source

pip install opencv-python open3d

Installing:

Clone the repo using the --recursive flag and install using setup.py (may take up to 10 minutes)

git clone --recursive https://github.com/princeton-vl/lietorch.git
python setup.py install
./run_tests.sh

Overview

LieTorch currently supports the 3D transformation groups.

Group Dimension Action
SO3 3 rotation
RxSO3 4 rotation + scaling
SE3 6 rotation + translation
Sim3 7 rotation + translation + scaling

Each group supports the following operations:

Operation Map Description
exp g -> G exponential map
log G -> g logarithm map
inv G -> G group inverse
mul G x G -> G group multiplication
adj G x g -> g adjoint
adjT G x g*-> g* dual adjoint
act G x R3 -> R3 action on point (set)
act4 G x P3 -> P3 action on homogeneous point (set)

 

Simple Example:

Compute the angles between all pairs of rotation matrices

import torch
from lietorch import SO3

phi = torch.randn(8000, 3, device='cuda', requires_grad=True)
R = SO3.exp(phi)

# relative rotation matrix, SO3 ^ {100 x 100}
dR = R[:,None].inv() * R[None,:]

# 100x100 matrix of angles
ang = dR.log().norm(dim=-1)

# backpropogation in tangent space
loss = ang.sum()
loss.backward()

Examples

We provide real use cases in the examples directory

  1. Pose Graph Optimization
  2. Deep SE3/Sim3 Registrtion
  3. RGB-D SLAM / VO

Acknowledgements

Many of the Lie Group implementations are adapted from Sophus.

Owner
Princeton Vision & Learning Lab
Princeton Vision & Learning Lab
STBP is a way to train SNN with datasets by Backward propagation.

Spiking neural network (SNN), compared with depth neural network (DNN), has faster processing speed, lower energy consumption and more biological interpretability, which is expected to approach Stron

Ling Zhang 18 Dec 09, 2022
Composable transformations of Python+NumPy programs: differentiate, vectorize, JIT to GPU/TPU, and more

JAX: Autograd and XLA Quickstart | Transformations | Install guide | Neural net libraries | Change logs | Reference docs | Code search News: JAX tops

Google 21.3k Jan 01, 2023
Pytorch implementation of Learning with Opponent-Learning Awareness

Pytorch implementation of Learning with Opponent-Learning Awareness using DiCE

Alexis David Jacq 82 Sep 15, 2022
disentanglement_lib is an open-source library for research on learning disentangled representations.

disentanglement_lib disentanglement_lib is an open-source library for research on learning disentangled representation. It supports a variety of diffe

Google Research 1.3k Dec 28, 2022
Repository for the paper "PoseAug: A Differentiable Pose Augmentation Framework for 3D Human Pose Estimation", CVPR 2021.

PoseAug: A Differentiable Pose Augmentation Framework for 3D Human Pose Estimation Code repository for the paper: PoseAug: A Differentiable Pose Augme

Pyjcsx 328 Dec 17, 2022
Contrastive Fact Verification

VitaminC This repository contains the dataset and models for the NAACL 2021 paper: Get Your Vitamin C! Robust Fact Verification with Contrastive Evide

47 Dec 19, 2022
MoCoGAN: Decomposing Motion and Content for Video Generation

MoCoGAN: Decomposing Motion and Content for Video Generation This repository contains an implementation and further details of MoCoGAN: Decomposing Mo

Sergey Tulyakov 514 Dec 18, 2022
[CVPR 2022] Structured Sparse R-CNN for Direct Scene Graph Generation

Structured Sparse R-CNN for Direct Scene Graph Generation Our paper Structured Sparse R-CNN for Direct Scene Graph Generation has been accepted by CVP

Multimedia Computing Group, Nanjing University 44 Dec 23, 2022
통일된 DataScience 폴더 구조 제공 및 가상환경 작업의 부담감 해소

Lucas coded by linux shell 목차 Mac버전 CookieCutter (autoenv) 1.How to Install autoenv 2.폴더 진입 시, activate 구현하기 3.폴더 탈출 시, deactivate 구현하기 4.Alias 설정하기 5

ello 3 Feb 21, 2022
BigDetection: A Large-scale Benchmark for Improved Object Detector Pre-training

BigDetection: A Large-scale Benchmark for Improved Object Detector Pre-training By Likun Cai, Zhi Zhang, Yi Zhu, Li Zhang, Mu Li, Xiangyang Xue. This

290 Dec 29, 2022
Conservative Q Learning for Offline Reinforcement Reinforcement Learning in JAX

CQL-JAX This repository implements Conservative Q Learning for Offline Reinforcement Reinforcement Learning in JAX (FLAX). Implementation is built on

Karush Suri 8 Nov 07, 2022
Pgn2tex - Scripts to convert pgn files to latex document. Useful to build books or pdf from pgn studies

Pgn2Latex (WIP) A simple script to make pdf from pgn files and studies. It's sti

12 Jul 23, 2022
Model search is a framework that implements AutoML algorithms for model architecture search at scale

Model search (MS) is a framework that implements AutoML algorithms for model architecture search at scale. It aims to help researchers speed up their exploration process for finding the right model a

Google 3.2k Dec 31, 2022
Graph Transformer Architecture. Source code for

Graph Transformer Architecture Source code for the paper "A Generalization of Transformer Networks to Graphs" by Vijay Prakash Dwivedi and Xavier Bres

NTU Graph Deep Learning Lab 561 Jan 08, 2023
StableSims is an open-source project aimed at simulating MakerDAO's Dai stablecoin system

StableSims is an open-source project aimed at simulating MakerDAO's Dai stablecoin system, initially used for researching optimal incentive parameters for Liquidations 2.0.

Blockchain at Berkeley 52 Nov 21, 2022
Official PyTorch implementation of the paper "Deep Constrained Least Squares for Blind Image Super-Resolution", CVPR 2022.

Deep Constrained Least Squares for Blind Image Super-Resolution [Paper] This is the official implementation of 'Deep Constrained Least Squares for Bli

MEGVII Research 141 Dec 30, 2022
Experiments on Flood Segmentation on Sentinel-1 SAR Imagery with Cyclical Pseudo Labeling and Noisy Student Training

Flood Detection Challenge This repository contains code for our submission to the ETCI 2021 Competition on Flood Detection (Winning Solution #2). Acco

Siddha Ganju 108 Dec 28, 2022
hySLAM is a hybrid SLAM/SfM system designed for mapping

HySLAM Overview hySLAM is a hybrid SLAM/SfM system designed for mapping. The system is based on ORB-SLAM2 with some modifications and refactoring. Raú

Brian Hopkinson 15 Oct 10, 2022
Code for paper "Multi-level Disentanglement Graph Neural Network"

Multi-level Disentanglement Graph Neural Network (MD-GNN) This is a PyTorch implementation of the MD-GNN, and the code includes the following modules:

Lirong Wu 6 Dec 29, 2022
Subdivision-based Mesh Convolutional Networks

Subdivision-based Mesh Convolutional Networks The official implementation of SubdivNet in our paper, Subdivion-based Mesh Convolutional Networks Requi

Zheng-Ning Liu 181 Dec 28, 2022