A PyTorch implementation of ECCV2018 Paper: TextSnake: A Flexible Representation for Detecting Text of Arbitrary Shapes

Overview

TextSnake: A Flexible Representation for Detecting Text of Arbitrary Shapes

A PyTorch implement of TextSnake: A Flexible Representation for Detecting Text of Arbitrary Shapes (ECCV 2018) by Megvii

Paper

Comparison of different representations for text instances. (a) Axis-aligned rectangle. (b) Rotated rectangle. (c) Quadrangle. (d) TextSnake. Obviously, the proposed TextSnake representation is able to effectively and precisely describe the geometric properties, such as location, scale, and bending of curved text with perspective distortion, while the other representations (axis-aligned rectangle, rotated rectangle or quadrangle) struggle with giving accurate predictions in such cases.

Textsnake elements:

  • center point
  • tangent line
  • text region

Description

Generally, this code has following features:

  1. include complete training and inference code
  2. pure python version without extra compiling
  3. compatible with laste PyTorch version (write with pytroch 0.4.0)
  4. support TotalText and SynthText dataset

Getting Started

This repo includes the training code and inference demo of TextSnake, training and infercence can be simplely run with a few code.

Prerequisites

To run this repo successfully, it is highly recommanded with:

  • Linux (Ubuntu 16.04)
  • Python3.6
  • Anaconda3
  • NVIDIA GPU(with 8G or larger GPU memory for training, 2G for inference)

(I haven't test it on other Python version.)

  1. clone this repository
git clone https://github.com/princewang1994/TextSnake.pytorch.git
  1. python package can be installed with pip
$ cd $TEXTSNAKE_ROOT
$ pip install -r requirements.txt

Data preparation

Pretraining with SynthText

$ CUDA_VISIBLE_DEVICES=$GPUID python train.py synthtext_pretrain --dataset synth-text --viz --max_epoch 1 --batch_size 8

Training

Training model with given experiment name $EXPNAME

training from scratch:

$ EXPNAME=example
$ CUDA_VISIBLE_DEVICES=$GPUID python train.py $EXPNAME --viz

training with pretrained model(improved performance much)

$ EXPNAME=example
$ CUDA_VISIBLE_DEVICES=$GPUID python train.py example --viz --batch_size 8 --resume save/synthtext_pretrain/textsnake_vgg_0.pth

options:

  • exp_name: experiment name, used to identify different training processes
  • --viz: visualization toggle, output pictures are saved to ./vis by default

other options can be show by run python train.py -h

Running tests

Runing following command can generate demo on TotalText dataset (300 pictures), the result are save to ./vis by default

$ EXPNAME=example
$ CUDA_VISIBLE_DEVICES=$GPUID python eval_textsnake.py $EXPNAME --checkepoch 190

options:

  • exp_name: experiment name, used to identify different training process

other options can be show by run python train.py -h

Evaluation

Total-Text metric is included in dataset/total_text/Evaluation_Protocol/Python_scripts/Deteval.py, you should first modify the input_dir in Deteval.py and run following command for computing DetEval:

$ python dataset/total_text/Evaluation_Protocol/Python_scripts/Deteval.py $EXPNAME --tr 0.8 --tp 0.4

or

$ python dataset/total_text/Evaluation_Protocol/Python_scripts/Deteval.py $EXPNAME --tr 0.7 --tp 0.6

it will output metrics reports.

Pretrained Models

Download from links above and place pth file to the corresponding path(save/XXX/textsnake_vgg_XX.pth).

Performance

DetEval reporting

Following table reports DetEval metrics when we set vgg as the backbone(can be reproduced by using pertained model in Pretrained Model section):

tr=0.7 / tp=0.6(P|R|F1) tr=0.8 / tp=0.4(P|R|F1) FPS(On single 1080Ti)
expand / no merge 0.652 | 0.549 | 0.596 0.874 | 0.711 | 0.784 12.07
expand / merge 0.698 | 0.578 | 0.633 0.859 | 0.660 | 0.746 8.38
no expand / no merge 0.753 | 0.693 | 0.722 0.695 | 0.628 | 0.660 9.94
no expand / merge 0.747 | 0.677 | 0.710 0.691 | 0.602 | 0.643 11.05
reported on paper - 0.827 | 0.745 | 0.784

* expand denotes expanding radius by 0.3 times while post-processing

* merge denotes that merging overlapped instance while post-processing

Pure Inference

You can also run prediction on your own dataset without annotations:

  1. Download pretrained model and place .pth file to save/pretrained/textsnake_vgg_180.pth
  2. Run pure inference script as following:
$ EXPNAME=pretrained
$ CUDA_VISIBLE_DEVICES=$GPUID python demo.py $EXPNAME --checkepoch 180 --img_root /path/to/image

predicted result will be saved in output/$EXPNAME and visualization in vis/${EXPNAME}_deploy

Qualitative results

  • left: prediction/ground true
  • middle: text region(TR)
  • right: text center line(TCL)

What is comming

  • Pretraining with SynthText
  • Metric computing
  • Pretrained model upload
  • Pure inference script
  • More dataset suport: [ICDAR15, CTW1500]
  • Various backbone experiments

License

This project is licensed under the MIT License - see the LICENSE.md file for details

Acknowledgement

Owner
Prince Wang
I'm a CS graduate student from Zhejiang University
Prince Wang
Captcha Recognition

The objective of this project is to recognize the target numbers in the captcha images correctly which would tell us how good or bad a captcha system has been built.

Mohit Kaushik 5 Feb 20, 2022
code for our ICCV 2021 paper "DeepCAD: A Deep Generative Network for Computer-Aided Design Models"

DeepCAD This repository provides source code for our paper: DeepCAD: A Deep Generative Network for Computer-Aided Design Models Rundi Wu, Chang Xiao,

Rundi Wu 85 Dec 31, 2022
Text Detection from images using OpenCV

EAST Detector for Text Detection OpenCV’s EAST(Efficient and Accurate Scene Text Detection ) text detector is a deep learning model, based on a novel

Abhishek Singh 88 Oct 20, 2022
A Vietnamese personal card OCR website built with Django.

Django VietCardOCR Installation Creation of virtual environments is done by executing the command venv: python -m venv venv That will create a new fol

Truong Hoang Thuan 4 Sep 04, 2021
Repository collecting all the submodules for the new PyTorch-based OCR System.

OCRopus3 is being replaced by OCRopus4, which is a rewrite using PyTorch 1.7; release should be soonish. Please check github.com/tmbdev/ocropus for up

NVIDIA Research Projects 138 Dec 09, 2022
A tool for extracting text from scanned documents (via OCR), with user-defined post-processing.

The project is based on older versions of tesseract and other tools, and is now superseded by another project which allows for more granular control o

Maxim 32 Jul 24, 2022
Detect textlines in document images

Textline Detection Detect textlines in document images Introduction This tool performs border, region and textline detection from document image data

QURATOR-SPK 70 Jun 30, 2022
A curated list of papers and resources for scene text detection and recognition

Awesome Scene Text A curated list of papers and resources for scene text detection and recognition The year when a paper was first published, includin

Jan Zdenek 43 Mar 15, 2022
Msos searcher - A half-hearted attempt at finding a magic square of squares

MSOS searcher A half-hearted attempt at finding (or rather searching) a MSOS (Magic Square of Squares) in the spirit of the Parker Square. Running I r

Niels Mündler 1 Jan 02, 2022
Demo for the paper "Overlap-aware low-latency online speaker diarization based on end-to-end local segmentation"

Streaming speaker diarization Overlap-aware low-latency online speaker diarization based on end-to-end local segmentation by Juan Manuel Coria, Hervé

Juanma Coria 185 Jan 01, 2023
Open Source Differentiable Computer Vision Library for PyTorch

Kornia is a differentiable computer vision library for PyTorch. It consists of a set of routines and differentiable modules to solve generic computer

kornia 7.6k Jan 04, 2023
Play the Namibian game of Owela against a terrible AI. Built using Django and htmx.

Owela Club A Django project for playing the Namibian game of Owela against a dumb AI. Built following the rules described on the Mancala World wiki pa

Adam Johnson 18 Jun 01, 2022
A machine learning software for extracting information from scholarly documents

GROBID GROBID documentation Visit the GROBID documentation for more detailed information. Summary GROBID (or Grobid, but not GroBid nor GroBiD) means

Patrice Lopez 1.9k Jan 08, 2023
Convolutional Recurrent Neural Network (CRNN) for image-based sequence recognition.

Convolutional Recurrent Neural Network This software implements the Convolutional Recurrent Neural Network (CRNN), a combination of CNN, RNN and CTC l

Baoguang Shi 2k Dec 31, 2022
The papers published in top-tier AI conferences in recent years.

AI-conference-papers The papers published in top-tier AI conferences in recent years. Paper table AAAI ICLR CVPR ICML ICCV ECCV NIPS 2019 ✔️ ✔️ ✔️ ✔️

Jinbae Park 6 Dec 09, 2022
基于openpose和图像分类的手语识别项目

手语识别 0、使用到的模型 (1). openpose,作者:CMU-Perceptual-Computing-Lab https://github.com/CMU-Perceptual-Computing-Lab/openpose (2). 图像分类classification,作者:Bubbl

20 Dec 15, 2022
This pyhton script converts a pdf to Image then using tesseract as OCR engine converts Image to Text

Script_Convertir_PDF_IMG_TXT Este script de pyhton convierte un pdf en Imagen luego utilizando tesseract como motor OCR convierte la Imagen a Texto. p

alebogado 1 Jan 27, 2022
Implementation of our paper 'PixelLink: Detecting Scene Text via Instance Segmentation' in AAAI2018

Code for the AAAI18 paper PixelLink: Detecting Scene Text via Instance Segmentation, by Dan Deng, Haifeng Liu, Xuelong Li, and Deng Cai. Contributions

758 Dec 22, 2022
Polaris is a Face recognition attendance system .

Support Me 🚀 About Polaris 📄 Polaris is a system based on facial recognition with a futuristic GUI design, Can easily find people informations store

XN3UR0N 215 Dec 26, 2022
TensorFlow Implementation of FOTS, Fast Oriented Text Spotting with a Unified Network.

FOTS: Fast Oriented Text Spotting with a Unified Network I am still working on this repo. updates and detailed instructions are coming soon! Table of

Masao Taketani 52 Nov 11, 2022