Sum-Product Probabilistic Language

Overview

Actions Status pypi

Sum-Product Probabilistic Language

SPPL is a probabilistic programming language that delivers exact solutions to a broad range of probabilistic inference queries. The language handles continuous, discrete, and mixed-type probability distributions; many-to-one numerical transformations; and a query language that includes general predicates on random variables.

Users express generative models as probabilistic programs with standard imperative constructs, such as arrays, if/else branches, for loops, etc. The program is then translated to a sum-product expression (a generalization of sum-product networks) that statically represents the probability distribution of all random variables in the program. This expression is used to deliver answers to probabilistic inference queries.

A system description of SPPL is given in the following paper:

SPPL: Probabilistic Programming with Fast Exact Symbolic Inference. Saad, F. A.; Rinard, M. C.; and Mansinghka, V. K. In PLDI 2021: Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation, June 20-25, Virtual, Canada. ACM, New York, NY, USA. 2021. https://doi.org/10.1145/3453483.3454078.

Installation

This software is tested on Ubuntu 18.04 and requires a Python 3.6+ environment. SPPL is available on PyPI

$ python -m pip install sppl

To install the Jupyter interface, first obtain the system-wide dependencies in requirements.sh and then run

$ python -m pip install 'sppl[magics]'

Examples

The easiest way to use SPPL is via the browser-based Jupyter interface, which allows for interactive modeling, querying, and plotting. Refer to the .ipynb notebooks under the examples directory.

Benchmarks

Please refer to the artifact at the ACM Digital Library: https://doi.org/10.1145/3453483.3454078

Guide to Source Code

Please refer to GUIDE.md for a description of the main source files in this repository.

Tests

To run the test suite as a user, first install the test dependencies:

$ python -m pip install 'sppl[tests]'

Then run the test suite:

$ python -m pytest --pyargs sppl

To run the test suite as a developer:

  • To run crash tests: $ ./check.sh
  • To run integration tests: $ ./check.sh ci
  • To run a specific test: $ ./check.sh [<pytest-opts>] /path/to/test.py
  • To run the examples: $ ./check.sh examples
  • To build a docker image: $ ./check.sh docker
  • To generate a coverage report: $ ./check.sh coverage

To view the coverage report, open htmlcov/index.html in the browser.

Language Reference

Coming Soon!

Citation

To cite this work, please use the following BibTeX.

@inproceedings{saad2021sppl,
title           = {{SPPL:} Probabilistic Programming with Fast Exact Symbolic Inference},
author          = {Saad, Feras A. and Rinard, Martin C. and Mansinghka, Vikash K.},
booktitle       = {PLDI 2021: Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Design and Implementation},
pages           = {804--819},
year            = 2021,
location        = {Virtual, Canada},
publisher       = {ACM},
address         = {New York, NY, USA},
doi             = {10.1145/3453483.3454078},
address         = {New York, NY, USA},
keywords        = {probabilistic programming, symbolic execution, static analysis},
}

License

Apache 2.0; see LICENSE.txt

Acknowledgments

The logo was designed by McCoy R. Becker.

Owner
MIT Probabilistic Computing Project
MIT Probabilistic Computing Project
Official PyTorch implementation of "Adversarial Reciprocal Points Learning for Open Set Recognition"

Adversarial Reciprocal Points Learning for Open Set Recognition Official PyTorch implementation of "Adversarial Reciprocal Points Learning for Open Se

Guangyao Chen 78 Dec 28, 2022
This reposityory contains the PyTorch implementation of our paper "Generative Dynamic Patch Attack".

Generative Dynamic Patch Attack This reposityory contains the PyTorch implementation of our paper "Generative Dynamic Patch Attack". Requirements PyTo

Xiang Li 8 Nov 17, 2022
PyTorch implementation for COMPLETER: Incomplete Multi-view Clustering via Contrastive Prediction (CVPR 2021)

Completer: Incomplete Multi-view Clustering via Contrastive Prediction This repo contains the code and data of the following paper accepted by CVPR 20

XLearning Group 72 Dec 07, 2022
[NeurIPS 2021 Spotlight] Code for Learning to Compose Visual Relations

Learning to Compose Visual Relations This is the pytorch codebase for the NeurIPS 2021 Spotlight paper Learning to Compose Visual Relations. Demo Imag

Nan Liu 88 Jan 04, 2023
Consumer Fairness in Recommender Systems: Contextualizing Definitions and Mitigations

Consumer Fairness in Recommender Systems: Contextualizing Definitions and Mitigations This is the repository for the paper Consumer Fairness in Recomm

7 Nov 30, 2022
Code for "Reconstructing 3D Human Pose by Watching Humans in the Mirror", CVPR 2021 oral

Reconstructing 3D Human Pose by Watching Humans in the Mirror Qi Fang*, Qing Shuai*, Junting Dong, Hujun Bao, Xiaowei Zhou CVPR 2021 Oral The videos a

ZJU3DV 178 Dec 13, 2022
K Closest Points and Maximum Clique Pruning for Efficient and Effective 3D Laser Scan Matching (To appear in RA-L 2022)

KCP The official implementation of KCP: k Closest Points and Maximum Clique Pruning for Efficient and Effective 3D Laser Scan Matching, accepted for p

Yu-Kai Lin 109 Dec 14, 2022
Rational Activation Functions - Replacing Padé Activation Units

Rational Activations - Learnable Rational Activation Functions First introduce as PAU in Padé Activation Units: End-to-end Learning of Activation Func

<a href=[email protected]"> 38 Nov 22, 2022
pytorch implementation of fast-neural-style

fast-neural-style 🌇 🚀 NOTICE: This codebase is no longer maintained, please use the codebase from pytorch examples repository available at pytorch/e

Abhishek Kadian 405 Dec 15, 2022
Jittor implementation of PCT:Point Cloud Transformer

PCT: Point Cloud Transformer This is a Jittor implementation of PCT: Point Cloud Transformer.

MenghaoGuo 547 Jan 03, 2023
Official repository for "PAIR: Planning and Iterative Refinement in Pre-trained Transformers for Long Text Generation"

pair-emnlp2020 Official repository for the paper: Xinyu Hua and Lu Wang: PAIR: Planning and Iterative Refinement in Pre-trained Transformers for Long

Xinyu Hua 31 Oct 13, 2022
Контрольная работа по математическим методам машинного обучения

ML-MathMethods-Test Контрольная работа по математическим методам машинного обучения. Вычисление основных статистик, диаграмм и графиков, проверка разл

Stas Ivanovskii 1 Jan 06, 2022
Deep Ensemble Learning with Jet-Like architecture

Ransomware analysis using DEL with jet-like architecture comprising two CNN wings, a sparse AE tail, a non-linear PCA to produce a diverse feature space, and an MLP nose

Ahsen Nazir 2 Feb 06, 2022
Official repository for the ICLR 2021 paper Evaluating the Disentanglement of Deep Generative Models with Manifold Topology

Official repository for the ICLR 2021 paper Evaluating the Disentanglement of Deep Generative Models with Manifold Topology Sharon Zhou, Eric Zelikman

Stanford Machine Learning Group 34 Nov 16, 2022
Autonomous Driving on Curvy Roads without Reliance on Frenet Frame: A Cartesian-based Trajectory Planning Method

C++/ROS Source Codes for "Autonomous Driving on Curvy Roads without Reliance on Frenet Frame: A Cartesian-based Trajectory Planning Method" published in IEEE Trans. Intelligent Transportation Systems

Bai Li 88 Dec 23, 2022
How Effective is Incongruity? Implications for Code-mix Sarcasm Detection.

Code for the paper: How Effective is Incongruity? Implications for Code-mix Sarcasm Detection - ICON ACL 2021

2 Jun 05, 2022
Dataset and Code for the paper "DepthTrack: Unveiling the Power of RGBD Tracking" (ICCV2021), and "Depth-only Object Tracking" (BMVC2021)

DeT and DOT Code and datasets for "DepthTrack: Unveiling the Power of RGBD Tracking" (ICCV2021) "Depth-only Object Tracking" (BMVC2021) @InProceedings

Yan Song 55 Dec 15, 2022
Lighting the Darkness in the Deep Learning Era: A Survey, An Online Platform, A New Dataset

Lighting the Darkness in the Deep Learning Era: A Survey, An Online Platform, A New Dataset This repository provides a unified online platform, LoLi-P

Chongyi Li 457 Jan 03, 2023
Neural Scene Flow Fields using pytorch-lightning, with potential improvements

nsff_pl Neural Scene Flow Fields using pytorch-lightning. This repo reimplements the NSFF idea, but modifies several operations based on observation o

AI葵 178 Dec 21, 2022
Official Pytorch implementation for AAAI2021 paper (RSPNet: Relative Speed Perception for Unsupervised Video Representation Learning)

RSPNet Official Pytorch implementation for AAAI2021 paper "RSPNet: Relative Speed Perception for Unsupervised Video Representation Learning" [Suppleme

35 Jun 24, 2022