ConformalLayers: A non-linear sequential neural network with associative layers

Overview

ConformalLayers: A non-linear sequential neural network with associative layers

ConformalLayers is a conformal embedding of sequential layers of Convolutional Neural Networks (CNNs) that allows associativity between operations like convolution, average pooling, dropout, flattening, padding, dilation, and stride. Such embedding allows associativity between layers of CNNs, considerably reducing the amount of operations to perform inference in type of neural networks.

This repository is a implementation of ConformalLayers written in Python using Minkowski Engine and PyTorch as backend. This implementation is a first step into the usage of activation functions, like ReSPro, that can be represented as tensors, depending on the geometry model.

Please cite our SIBGRAPI'21 paper if you use this code in your research. The paper presents a complete description of the library:

@InProceedings{sousa_et_al-sibgrapi-2021,
  author    = {Sousa, Eduardo V. and Fernandes, Leandro A. F. and Vasconcelos, Cristina N.},
  title     = {{C}onformal{L}ayers: a non-linear sequential neural network with associative layers},
  booktitle = {Proceedings of the 2021 34th SIBGRAPI Conference on Graphics, Patterns and Images},
  year      = {2021},
}

Please, let Eduardo Vera Sousa (http://www.ic.uff.br/~eduardovera), Leandro A. F. Fernandes (http://www.ic.uff.br/~laffernandes) and Cristina Nader Vasconcelos(http://www2.ic.uff.br/~crisnv/index.php) know if you want to contribute to this project. Also, do not hesitate to contact them if you encounter any problems.

Contents:

  1. Requirements
  2. How to Install ConformalLayers
  3. Running Examples
  4. Compiling and Running Unit Tests
  5. Documentation
  6. License

1. Requirements

Make sure that you have the following tools before attempting to use ConformalLayers.

Required tools:

Optional tool to use ConformalLayers:

  • Virtual enviroment to create an isolated workspace for a Python application.

  • Docker to create a container to run ConformalLayers

2. How to Install ConformalLayers

No magic needed here. Just run:

python setup.py install

3. Running Examples

The basic steps for running the examples of ConformalLayers look like this:

cd <ConformalLayers-dir>/Experiments/<experiment-name>

For Experiments I and II, each file refers to the experiment described on the main paper. Thus, in order to run BaseReSProNet with FashionMNIST dataset, for example, all you have to do is:

python BaseReSProNet.py --dataset=FashionMNIST

The values that can be used for the dataset argument are

  • MNIST
  • FashionMNIST
  • CIFAR10

The loader of each dataset is described in Experiments/utils/datasets.py file.

Other arguments for the script files in Experiments I and II are:

  • epochs (int value)
  • batch_size (int value)
  • learning_rate (float value)
  • optimizer (adam or rmsprop)
  • dropout (float value)

For Experiments III and IV, since we compute the amount of memory used, we used an external file to orchestrate the calls and make sure we have a clean environment for the next iterations. Such orchestrator is writen on the files with the suffix _manager.py.

You can also run the files that corresponds to each architecture individually, without the orchestrator. To run D3ModNetCL architecture, for example, just run

python D3ModNetCL.py

The arguments for the non-orchestrated scripts in Experiments III and IV are:

  • num_inferences (int value)
  • batch_size (int value)
  • depth (int value, Experiment III only)

The files in networks folder contains the description of each architecture used in our experiments and presents the usage of the classes and methods of our library.

4. Running Unit Tests

The basic steps for running the unit tests of ConformalLayers look like this:

cd <ConformalLayers-dir>/tests

To run all tests, simply run

python test_all.py

To run the tests for each module, run:

python test_<module_name>.py

5. Documentation

Here you find a brief description of the namespaces, macros, classes, functions, procedures, and operators available for the user. All methods are available with C++ and most of them with Python. The detailed documentation is not ready yet.

Contents:

Modules

Here we present the main modules implemented in our framework. Most of the modules are used just like in PyTorch, so users with some background on this framework benefits from this implementation. For users not familiar with PyTorch, the usage still quite simple and intuitive.

Module Description
Conv1d, Conv2d, Conv3d, ConvNd Convolution operation implemented for n-D signals
AvgPool1d, AvgPool2d, AvgPool3d, AvgPoolNd Average pooling operation implemented for n-D signals
BaseActivation The abstract class for the activation function layer. To extend the library, one shall implement this class
ReSPro The layer that corresponds to the ReSPro activation function. Such function is a linear function with non-linear behavior that can be encoded as a tensor. The non-linearity of this function is controlled by a parameter α (passed as argument) that can be provided or inferred from the data
Regularization In this version, Dropout is only regularization available. In this approach, during the training phase, we randomly shut down some neurons with a probability p, passed as argument to this module

These modules are composed into ConformalLayers in a very similar way to the pure PyTorch-based way. The class ConformalLayers plays an important role in this task, as you can see by comparing the code snippets below:

# This one is built with pure PyTorch
import torch.nn as nn

class D3ModNet(nn.Module):
    def __init__(self):
        super(D3ModNet, self).__init__()
        self.features = nn.Sequential(
            nn.Conv2d(in_channels=3, out_channels=32, kernel_size=3),
            nn.ReSPro(),
            nn.AvgPool2d(kernel_size=2, stride=2),
            nn.Conv2d(in_channels=32, out_channels=32, kernel_size=3),
            nn.ReSPro(),
            nn.AvgPool2d(kernel_size=2, stride=2),
            nn.Conv2d(in_channels=32, out_channels=32, kernel_size=3),
            nn.ReSPro(),
            nn.AvgPool2d(kernel_size=2, stride=2),
        )
        self.fc1 = nn.Linear(128, 10)

    def forward(self, x):
        x = self.features(x)
        x = x.view(x.shape[0], -1)
        x = self.fc1(x)
        return x
# This one is built with ConformalLayers
import torch.nn as nn
import ConformalLayers as cl

class D3ModNetCL(nn.Module):
    def __init__(self):
        super(D3ModNetCL, self).__init__()
        self.features = cl.ConformalLayers(
            cl.Conv2d(in_channels=3, out_channels=32, kernel_size=3),
            cl.ReSPro(),
            cl.AvgPool2d(kernel_size=2, stride=2),
            cl.Conv2d(in_channels=32, out_channels=32, kernel_size=3),
            cl.ReSPro(),
            cl.AvgPool2d(kernel_size=2, stride=2),
            cl.Conv2d(in_channels=32, out_channels=32, kernel_size=3),
            cl.ReSPro(),
            cl.AvgPool2d(kernel_size=2, stride=2),
        )
        self.fc1 = nn.Linear(128, 10)

    def forward(self, x):
        x = self.features(x)
        x = x.view(x.shape[0], -1)
        x = self.fc1(x)
        return x

They look pretty much the same code, right? That's because we've implemented ConformalLayers to be a transition smoothest as possible to the PyTorch user. Most of the modules has almost the same method signatures of the ones provided by PyTorch.

Convolution

The convolution operation implemented in ConformalLayers on the modules ConvNd, Conv1d, Conv2d and Conv3d is almost the same one implemented on PyTorch but we do not allow bias. This is mostly due to the construction of our logic when building the representation with tensors. Although we have a few ideas on how to include bias on this representation, they are not included in the current version. The parameters are detailed below and are originally available in PyTorch convolution documentation page. The exception here relies on the padding_mode parameter, that is always set to 'zeros' in our implementation.

  • in_channels (int) – Number of channels in the input image

  • out_channels (int) – Number of channels produced by the convolution

  • kernel_size (int or tuple) – Size of the convolving kernel

  • stride (int or tuple, optional) – Stride of the convolution. Default: 1

  • padding (int, tuple or str, optional) – Padding added to both sides of the input. Default: 0

  • dilation (int or tuple, optional) – Spacing between kernel elements. Default: 1

  • groups (int, optional) – Number of blocked connections from input channels to output channels. Default: 1

Pooling

In our current implementation, we only support average pooling, which is implemented on modules AvgPoolNd, AvgPool1d, AvgPool2d and AvgPool3d. The parameters list, originally available in PyTorch average pooling documentation page, is described below:

  • kernel_size – the size of the window

  • stride – the stride of the window. Default value is kernel_size

  • padding – implicit zero padding to be added on both sides

  • ceil_mode – when True, will use ceil instead of floor to compute the output shape

  • count_include_pad – when True, will include the zero-padding in the averaging calculation

Activation

Our activation module has ReSPro activation function implemented natively. By using Reflections, Scalings and Projections on an hypersphere in higher dimensions, we created a non-linear differentiable associative activation function that can be represented in tensor form. It has only one parameter, that controls how close to linear or non-linear is the curve. More details are available on the main paper.

  • alpha (float, optional) - controls the non-linearity of the curve. If it is not provided, it's automatically estimated.

Regularization

On regularization module we have Dropout implemented in this version. It is based on the idea of randomly shutting down some neurons in order to prevent overfitting. It takes only two parameters, listed below. This list was originally available in PyTorch documentation page.

  • p – probability of an element to be zeroed. Default: 0.5

  • inplace – If set to True, will do this operation in-place. Default: False

6. License

This software is licensed under the GNU General Public License v3.0. See the LICENSE file for details.

You might also like...
 Improving Deep Network Debuggability via Sparse Decision Layers
Improving Deep Network Debuggability via Sparse Decision Layers

Improving Deep Network Debuggability via Sparse Decision Layers This repository contains the code for our paper: Leveraging Sparse Linear Layers for D

Accelerate Neural Net Training by Progressively Freezing Layers
Accelerate Neural Net Training by Progressively Freezing Layers

FreezeOut A simple technique to accelerate neural net training by progressively freezing layers. This repository contains code for the extended abstra

a reccurrent neural netowrk that when trained on a peice of text and fed a starting prompt will write its on 250 character text using LSTM layers

RNN-Playwrite a reccurrent neural netowrk that when trained on a peice of text and fed a starting prompt will write its on 250 character text using LS

PyTorch Code of "Memory In Memory: A Predictive Neural Network for Learning Higher-Order Non-Stationarity from Spatiotemporal Dynamics"

Memory In Memory Networks It is based on the paper Memory In Memory: A Predictive Neural Network for Learning Higher-Order Non-Stationarity from Spati

Pytorch code for paper
Pytorch code for paper "Image Compressed Sensing Using Non-local Neural Network" TMM 2021.

NL-CSNet-Pytorch Pytorch code for paper "Image Compressed Sensing Using Non-local Neural Network" TMM 2021. Note: this repo only shows the strategy of

This is a model made out of Neural Network specifically a Convolutional Neural Network model
This is a model made out of Neural Network specifically a Convolutional Neural Network model

This is a model made out of Neural Network specifically a Convolutional Neural Network model. This was done with a pre-built dataset from the tensorflow and keras packages. There are other alternative libraries that can be used for this purpose, one of which is the PyTorch library.

Code image classification of MNIST dataset using different architectures: simple linear NN, autoencoder, and highway network

Deep Learning for image classification pip install -r http://webia.lip6.fr/~baskiotisn/requirements-amal.txt Train an autoencoder python3 train_auto

Code for our paper at ECCV 2020: Post-Training Piecewise Linear Quantization for Deep Neural Networks
Code for our paper at ECCV 2020: Post-Training Piecewise Linear Quantization for Deep Neural Networks

PWLQ Updates 2020/07/16 - We are working on getting permission from our institution to release our source code. We will release it once we are granted

A framework that constructs deep neural networks, autoencoders, logistic regressors, and linear networks

A framework that constructs deep neural networks, autoencoders, logistic regressors, and linear networks without the use of any outside machine learning libraries - all from scratch.

Comments
  • how would you add bias?

    how would you add bias?

    the readme mentions you have a few ideas on how to do so, curious what they are. lack of bias seems to hurt performance, based on the conformallayers paper

    opened by alok 1
  • Typo when importing progress_bar in Experiment 1

    Typo when importing progress_bar in Experiment 1

    Upon trying to run Experiment I, the following error message appears.

    $ python BaseReSProNet.py --dataset=FashionMNIST
    Traceback (most recent call last):
      File "BaseReSProNet.py", line 11, in <module>
        from Experiments.utils.utils import progress_bar
    ModuleNotFoundError: No module named 'Experiments.utils.utils'
    

    I believe it is a typo; according to the source code, it should be

    from Experiments.utils.utils import progress_bar

    Environment:

    • Running the Minkowski Engine Docker built with https://github.com/NVIDIA/MinkowskiEngine/blob/master/docker/Dockerfile
    • Ubuntu 20.04
    bug 
    opened by wilderlopes 1
  • Missing setup.py

    Missing setup.py

    Hi everybody,

    Congrats on the paper! I am looking forward to reproducing it. However, I noticed the setup.py (used to install your library according to the documentation) is missing from the repo. Is there any other we could install/run it?

    enhancement 
    opened by wilderlopes 1
Releases(v1.2.1)
Owner
Prograf-UFF
Graphics Processing Research Laboratory
Prograf-UFF
Official source code of Fast Point Transformer, CVPR 2022

Fast Point Transformer Project Page | Paper This repository contains the official source code and data for our paper: Fast Point Transformer Chunghyun

182 Dec 23, 2022
Hierarchical Attentive Recurrent Tracking

Hierarchical Attentive Recurrent Tracking This is an official Tensorflow implementation of single object tracking in videos by using hierarchical atte

Adam Kosiorek 147 Aug 07, 2021
Train CNNs for the fruits360 data set in NTOU CS「Machine Vision」class.

CNNs fruits360 Train CNNs for the fruits360 data set in NTOU CS「Machine Vision」class. CNN on a pretrained model Build a CNN on a pretrained model, Res

Ricky Chuang 1 Mar 07, 2022
Only valid pull requests will be allowed. Use python only and readme changes will not be accepted.

❌ This repo is excluded from hacktoberfest This repo is for python beginners and contains lot of beginner python projects for practice. You can also s

Prajjwal Pathak 50 Dec 28, 2022
ComPhy: Compositional Physical Reasoning ofObjects and Events from Videos

ComPhy This repository holds the code for the paper. ComPhy: Compositional Physical Reasoning ofObjects and Events from Videos, (Under review) PDF Pro

29 Dec 29, 2022
Adversarial vulnerability of powerful near out-of-distribution detection

Adversarial vulnerability of powerful near out-of-distribution detection by Stanislav Fort In this repository we're collecting replications for the ke

Stanislav Fort 9 Aug 30, 2022
Pytorch implementation of the AAAI 2022 paper "Cross-Domain Empirical Risk Minimization for Unbiased Long-tailed Classification"

[AAAI22] Cross-Domain Empirical Risk Minimization for Unbiased Long-tailed Classification We point out the overlooked unbiasedness in long-tailed clas

PatatiPatata 28 Oct 18, 2022
Unified tracking framework with a single appearance model

Paper: Do different tracking tasks require different appearance model? [ArXiv] (comming soon) [Project Page] (comming soon) UniTrack is a simple and U

ZhongdaoWang 300 Dec 24, 2022
LoFTR:Detector-Free Local Feature Matching with Transformers CVPR 2021

LoFTR-with-train-script LoFTR:Detector-Free Local Feature Matching with Transformers CVPR 2021 (with train script --- unofficial ---). About Megadepth

Nan Xiaohu 15 Nov 04, 2022
AutoPentest-DRL: Automated Penetration Testing Using Deep Reinforcement Learning

AutoPentest-DRL: Automated Penetration Testing Using Deep Reinforcement Learning AutoPentest-DRL is an automated penetration testing framework based o

Cyber Range Organization and Design Chair 217 Jan 01, 2023
TF Image Segmentation: Image Segmentation framework

TF Image Segmentation: Image Segmentation framework The aim of the TF Image Segmentation framework is to provide/provide a simplified way for: Convert

Daniil Pakhomov 546 Dec 17, 2022
A dual benchmarking study of visual forgery and visual forensics techniques

A dual benchmarking study of facial forgery and facial forensics In recent years, visual forgery has reached a level of sophistication that humans can

8 Jul 06, 2022
这是一个unet-pytorch的源码,可以训练自己的模型

Unet:U-Net: Convolutional Networks for Biomedical Image Segmentation目标检测模型在Pytorch当中的实现 目录 性能情况 Performance 所需环境 Environment 注意事项 Attention 文件下载 Downl

Bubbliiiing 567 Jan 05, 2023
Official Pytorch Implementation of Relational Self-Attention: What's Missing in Attention for Video Understanding

Relational Self-Attention: What's Missing in Attention for Video Understanding This repository is the official implementation of "Relational Self-Atte

mandos 43 Dec 07, 2022
Self-Supervised Pre-Training for Transformer-Based Person Re-Identification

Self-Supervised Pre-Training for Transformer-Based Person Re-Identification [pdf] The official repository for Self-Supervised Pre-Training for Transfo

Hao Luo 116 Jan 04, 2023
Deep Learning and Logical Reasoning from Data and Knowledge

Logic Tensor Networks (LTN) Logic Tensor Network (LTN) is a neurosymbolic framework that supports querying, learning and reasoning with both rich data

171 Dec 29, 2022
Code for the paper "Balancing Training for Multilingual Neural Machine Translation, ACL 2020"

Balancing Training for Multilingual Neural Machine Translation Implementation of the paper Balancing Training for Multilingual Neural Machine Translat

Xinyi Wang 21 May 18, 2022
FEDn is an open-source, modular and ML-framework agnostic framework for Federated Machine Learning

FEDn is an open-source, modular and ML-framework agnostic framework for Federated Machine Learning (FedML) developed and maintained by Scaleout Systems. FEDn enables highly scalable cross-silo and cr

Scaleout 75 Nov 09, 2022
Official repository for the NeurIPS 2021 paper Get Fooled for the Right Reason: Improving Adversarial Robustness through a Teacher-guided curriculum Learning Approach

Get Fooled for the Right Reason Official repository for the NeurIPS 2021 paper Get Fooled for the Right Reason: Improving Adversarial Robustness throu

Sowrya Gali 1 Apr 25, 2022
Paper: De-rendering Stylized Texts

Paper: De-rendering Stylized Texts Wataru Shimoda1, Daichi Haraguchi2, Seiichi Uchida2, Kota Yamaguchi1 1CyberAgent.Inc, 2 Kyushu University Accepted

CyberAgent AI Lab 55 Dec 18, 2022