Exploit ILP to learn symmetry breaking constraints of ASP programs.

Overview

ILP Symmetry Breaking

Overview

This project aims to exploit inductive logic programming to lift symmetry breaking constraints of ASP programs.

Given an ASP file, we use the system SBASS (symmetry-breaking answer set solving) to infer its graph representation and then detect the symmetries as a graph automorphism problem (performed by the system SAUCY). SBASS returns a set of (irredundant) graph symmetry generators, which are used in our framework to compute the positive and negative examples for the ILP system ILASP.

Note: the files of Active Background Knowledge (active_BK/active_BK_sat) contain the constraints learned for the experiments. To test the framework, remove the constraints and follow the files' instructions to obtain the same result.

Project Structure

.
├── \Experiments              # Directory with experiments results 
│   ├── experiments.csv         # CSV file with results
│   └── experiments             # Script to compare the running-time performance     
│
├── \Instances              # Directory with problem instances
│   ├── \House_Configuration     # House-Configuration Problem     
│   ├── \Pigeon_Owner            # Pigeon-Hole Problem with colors and owners extension   
│   ├── \Pigeon_Color            # Pigeon-Hole Problem with colors extension
│   └── \Pigeon_Hole             # Pigeon-Hole Problem  
│
├── \src                    # Sources  
│   ├── \ILASP4                  # ILASP4 
│   ├── \SBASS                   # SBASS 
│   ├── file_names.py            # Python module with file names
│   ├── parser.py                # Main python file: create the positive and negative examples from SBASS output
│   ├── remove.py                # Auxiliary python file to remove duplicate in smodels file
│   └── permutations.lp          # ASP file which computes the (partial) non symmetric 
│                                  permutations of atoms
│
├── .gitignore 
├── .gitattributes
├── ILP_SBC                 # Script that runs SBASS and lift the SBC found using ILASP
└── README.md

Prerequisites

Usage

1) Create default positive examples

Create the default positive examples for Pigeon_Hole problem: each instance in the directory Gen generate a positive example.

$ .\ILP_SBC -g .\Instances\Pigeon_Hole

2) Create positive and negative examples

Default mode: each non-symmetric answer set defines a positive example

 $ .\ILP_SBC -d .\Instances\Pigeon_Hole

Satisfiable mode: define a single positive example with empty inclusions and exclusions

 $ .\ILP_SBC -s .\Instances\Pigeon_Hole

3) Run ILASP to extend the active background knowledge

 $ .\ILP_SBC -i .\Instances\Pigeon_Hole

Citations

C. Drescher, O. Tifrea, and T. Walsh, “Symmetry-breaking answer set solving” (SBASS)

@article{drescherSymmetrybreakingAnswerSet2011,
	title = {Symmetry-breaking answer set solving},
	volume = {24},
	doi = {10.3233/AIC-2011-0495},
	number = {2},
	journal = {AI Commun.},
	author = {Drescher, Christian and Tifrea, Oana and Walsh, Toby},
	year = {2011},
	pages = {177--194}
}

M. Law, A. Russo, and K. Broda, “The {ILASP} System for Inductive Learning of Answer Set Programs” (ILASP)

@article{larubr20b,
     title = {The {ILASP} System for Inductive Learning of Answer Set Programs},
     author = {M. Law and A. Russo  and K. Broda},
     journal = {The Association for Logic Programming Newsletter},
     year = {2020}
}
@misc{ilasp,
     author = {M. Law and A. Russo  and K. Broda},
     title = {Ilasp Releases},
     howpublished = {\url{www.ilasp.com}},
     note = {Accessed: 2020-10-01},
     year={2020}
}
Owner
Research Group Production Systems
Research Group Production Systems
ML-Decoder: Scalable and Versatile Classification Head

ML-Decoder: Scalable and Versatile Classification Head Paper Official PyTorch Implementation Tal Ridnik, Gilad Sharir, Avi Ben-Cohen, Emanuel Ben-Baru

189 Jan 04, 2023
Statistical and Algorithmic Investing Strategies for Everyone

Eiten - Algorithmic Investing Strategies for Everyone Eiten is an open source toolkit by Tradytics that implements various statistical and algorithmic

Tradytics 2.5k Jan 02, 2023
Uncertainty Estimation via Response Scaling for Pseudo-mask Noise Mitigation in Weakly-supervised Semantic Segmentation

Uncertainty Estimation via Response Scaling for Pseudo-mask Noise Mitigation in Weakly-supervised Semantic Segmentation Introduction This is a PyTorch

XMed-Lab 30 Sep 23, 2022
Colour detection is necessary to recognize objects, it is also used as a tool in various image editing and drawing apps.

Colour Detection On Image Colour detection is the process of detecting the name of any color. Simple isn’t it? Well, for humans this is an extremely e

Astitva Veer Garg 1 Jan 13, 2022
This is a collection of all challenges in HKCERT CTF 2021

香港網絡保安新生代奪旗挑戰賽 2021 (HKCERT CTF 2021) This is a collection of all challenges (and writeups) in HKCERT CTF 2021 Challenges ID Chinese name Name Score S

10 Jan 27, 2022
GraPE is a Rust/Python library for high-performance Graph Processing and Embedding.

GraPE GraPE (Graph Processing and Embedding) is a fast graph processing and embedding library, designed to scale with big graphs and to run on both of

AnacletoLab 194 Dec 29, 2022
Visual dialog agents with pre-trained vision-and-language encoders.

Learning Better Visual Dialog Agents with Pretrained Visual-Linguistic Representation Or READ-UP: Referring Expression Agent Dialog with Unified Pretr

7 Oct 08, 2022
Source code for "MusCaps: Generating Captions for Music Audio" (IJCNN 2021)

MusCaps: Generating Captions for Music Audio Ilaria Manco1 2, Emmanouil Benetos1, Elio Quinton2, Gyorgy Fazekas1 1 Queen Mary University of London, 2

Ilaria Manco 57 Dec 07, 2022
DM-ACME compatible implementation of the Arm26 environment from Mujoco

ACME-compatible implementation of Arm26 from Mujoco This repository contains a customized implementation of Mujoco's Arm26 model, that can be used wit

1 Dec 24, 2021
Deeply Supervised, Layer-wise Prediction-aware (DSLP) Transformer for Non-autoregressive Neural Machine Translation

Non-Autoregressive Translation with Layer-Wise Prediction and Deep Supervision Training Efficiency We show the training efficiency of our DSLP model b

Chenyang Huang 36 Oct 31, 2022
Scene-Text-Detection-and-Recognition (Pytorch)

Scene-Text-Detection-and-Recognition (Pytorch) Competition URL: https://tbrain.t

Gi-Luen Huang 9 Jan 02, 2023
🚀 PyTorch Implementation of "Progressive Distillation for Fast Sampling of Diffusion Models(v-diffusion)"

PyTorch Implementation of "Progressive Distillation for Fast Sampling of Diffusion Models(v-diffusion)" Unofficial PyTorch Implementation of Progressi

Vitaliy Hramchenko 58 Dec 19, 2022
RAMA: Rapid algorithm for multicut problem

RAMA: Rapid algorithm for multicut problem Solves multicut (correlation clustering) problems orders of magnitude faster than CPU based solvers without

Paul Swoboda 60 Dec 13, 2022
《Dual-Resolution Correspondence Network》(NeurIPS 2020)

Dual-Resolution Correspondence Network Dual-Resolution Correspondence Network, NeurIPS 2020 Dependency All dependencies are included in asset/dualrcne

Active Vision Laboratory 45 Nov 21, 2022
Official implementation of Self-supervised Image-to-text and Text-to-image Synthesis

Self-supervised Image-to-text and Text-to-image Synthesis This is the official implementation of Self-supervised Image-to-text and Text-to-image Synth

6 Jul 31, 2022
Pytorch implementation for ACMMM2021 paper "I2V-GAN: Unpaired Infrared-to-Visible Video Translation".

I2V-GAN This repository is the official Pytorch implementation for ACMMM2021 paper "I2V-GAN: Unpaired Infrared-to-Visible Video Translation". Traffic

69 Dec 31, 2022
Parameterising Simulated Annealing for the Travelling Salesman Problem

Parameterising Simulated Annealing for the Travelling Salesman Problem

Gary Sun 55 Jun 15, 2022
Reading list for research topics in Masked Image Modeling

awesome-MIM Reading list for research topics in Masked Image Modeling(MIM). We list the most popular methods for MIM, if I missed something, please su

ligang 231 Dec 07, 2022
Deep Face Recognition in PyTorch

Face Recognition in PyTorch By Alexey Gruzdev and Vladislav Sovrasov Introduction A repository for different experimental Face Recognition models such

Alexey Gruzdev 141 Sep 11, 2022