PyDeepFakeDet is an integrated and scalable tool for Deepfake detection.

Overview

PyDeepFakeDet

An integrated and scalable library for Deepfake detection research.

Introduction

PyDeepFakeDet is an integrated and scalable Deepfake detection tool developed by Fudan Vision and Learning Lab. The goal is to provide state-of-the-art Deepfake detection Models as well as interfaces for the training and evaluation of new Models on commonly used Deepfake datasets.

This repository includes implementations of both CNN-based and Transformer-based methods:

Model Zoo and Baselines

The baseline Models on three versions of FF-DF dataset are provided.

Method RAW C23 C40 Model
ResNet50 97.61 94.87 84.95 RAW / C23 / C40
Xception 97.84 95.24 86.27 RAW / C23 / C40
EfficientNet-b4 97.89 95.61 87.12 RAW / C23 / C40
Meso4 85.14 77.14 60.13 RAW / C23 / C40
MesoInception4 95.45 84.13 71.31 RAW / C23 / C40
GramNet 97.65 95.16 86.21 RAW / C23 / C40
F3Net 99.95 97.52 90.43 RAW / C23 / C40
MAT 97.90 95.59 87.06 RAW / C23 / C40
ViT 96.72 93.45 82.97 RAW / C23 / C40
M2TR 99.50 97.93 92.89 RAW / C23 / C40

The baseline Models on Celeb-DF is also available.

Method Celeb-DF Model
ResNet50 98.51 CelebDF
Xception 99.05 CelebDF
EfficientNet-b4 99.44 CelebDF
Meso4 73.04 CelebDF
MesoInception4 75.87 CelebDF
GramNet 98.67 CelebDF
F3Net 96.47 CelebDF
MAT 99.02 CelebDF
ViT 96.73 CelebDF
M2TR 99.76 CelebDF

Installation

  • We use Python == 3.9.0, torch==1.11.0, torchvision==1.12.0.

  • Install the required packages by:

    pip install -r requirements.txt

Data Preparation

Please follow the instructions in DATASET.md to prepare the data.

Quick Start

Specify the path of your local dataset in ./configs/resnet50.yaml, and then run:

python run.py --cfg resnet50.yaml

Visualization tools

Please refer to VISUALIZE.md for detailed instructions.

Contributors

PyDeepFakeDet is written and maintained by Wenhao Ouyang, Chao Zhang, Zhenxin Li, and Junke Wang.

License

PyDeepFakeDet is released under the MIT license.

Citations

@inproceedings{wang2021m2tr,
  title={M2TR: Multi-modal Multi-scale Transformers for Deepfake Detection},
  author={Wang, Junke and Wu, Zuxuan and Ouyang, Wenhao and Han, Xintong and Chen, Jingjing and Lim, Ser-Nam and Jiang, Yu-Gang},
  booktitle={ICMR},
  year={2022}
}
Owner
Junke, Wang
I'm a first-year Ph.D. student in the school of computer science at Fudan University, supervised by Prof. Zuxuan Wu and Prof. Yu-Gang Jiang.
Junke, Wang
Erpnext app for make employee salary on payroll entry based on one or more project with percentage for all project equal 100 %

Project Payroll this app for make payroll for employee based on projects like project on 30 % and project 2 70 % as account dimension it makes genral

Ibrahim Morghim 8 Jan 02, 2023
The Python code for the paper A Hybrid Quantum-Classical Algorithm for Robust Fitting

About The Python code for the paper A Hybrid Quantum-Classical Algorithm for Robust Fitting The demo program was only tested under Conda in a standard

Anh-Dzung Doan 5 Nov 28, 2022
I tried to apply the CAM algorithm to YOLOv4 and it worked.

YOLOV4:You Only Look Once目标检测模型在pytorch当中的实现 2021年2月7日更新: 加入letterbox_image的选项,关闭letterbox_image后网络的map得到大幅度提升。 目录 性能情况 Performance 实现的内容 Achievement

55 Dec 05, 2022
Generalized Matrix Means for Semi-Supervised Learning with Multilayer Graphs

Generalized Matrix Means for Semi-Supervised Learning with Multilayer Graphs MATLAB implementation of the paper: P. Mercado, F. Tudisco, and M. Hein,

Pedro Mercado 6 May 26, 2022
Instant Real-Time Example-Based Style Transfer to Facial Videos

FaceBlit: Instant Real-Time Example-Based Style Transfer to Facial Videos The official implementation of FaceBlit: Instant Real-Time Example-Based Sty

Aneta Texler 131 Dec 19, 2022
Code for the paper "SmoothMix: Training Confidence-calibrated Smoothed Classifiers for Certified Robustness" (NeurIPS 2021)

SmoothMix: Training Confidence-calibrated Smoothed Classifiers for Certified Robustness (NeurIPS2021) This repository contains code for the paper "Smo

Jongheon Jeong 17 Dec 27, 2022
A simple and useful implementation of LPIPS.

lpips-pytorch Description Developing perceptual distance metrics is a major topic in recent image processing problems. LPIPS[1] is a state-of-the-art

So Uchida 121 Dec 24, 2022
Seach Losses of our paper 'Loss Function Discovery for Object Detection via Convergence-Simulation Driven Search', accepted by ICLR 2021.

CSE-Autoloss Designing proper loss functions for vision tasks has been a long-standing research direction to advance the capability of existing models

Peidong Liu(刘沛东) 54 Dec 17, 2022
Out-of-boundary View Synthesis towards Full-frame Video Stabilization

Out-of-boundary View Synthesis towards Full-frame Video Stabilization Introduction | Update | Results Demo | Introduction This repository contains the

25 Oct 10, 2022
Registration Loss Learning for Deep Probabilistic Point Set Registration

RLLReg This repository contains a Pytorch implementation of the point set registration method RLLReg. Details about the method can be found in the 3DV

Felix Järemo Lawin 35 Nov 02, 2022
FaceAPI: AI-powered Face Detection & Rotation Tracking, Face Description & Recognition, Age & Gender & Emotion Prediction for Browser and NodeJS using TensorFlow/JS

FaceAPI AI-powered Face Detection & Rotation Tracking, Face Description & Recognition, Age & Gender & Emotion Prediction for Browser and NodeJS using

Vladimir Mandic 395 Dec 29, 2022
[NeurIPS 2021] Code for Unsupervised Learning of Compositional Energy Concepts

Unsupervised Learning of Compositional Energy Concepts This is the pytorch code for the paper Unsupervised Learning of Compositional Energy Concepts.

45 Nov 30, 2022
Official PyTorch implementation of the Fishr regularization for out-of-distribution generalization

Fishr: Invariant Gradient Variances for Out-of-distribution Generalization Official PyTorch implementation of the Fishr regularization for out-of-dist

62 Dec 22, 2022
The Official PyTorch Implementation of "VAEBM: A Symbiosis between Variational Autoencoders and Energy-based Models" (ICLR 2021 spotlight paper)

Official PyTorch implementation of "VAEBM: A Symbiosis between Variational Autoencoders and Energy-based Models" (ICLR 2021 Spotlight Paper) Zhisheng

NVIDIA Research Projects 45 Dec 26, 2022
《Train in Germany, Test in The USA: Making 3D Object Detectors Generalize》(CVPR 2020)

Train in Germany, Test in The USA: Making 3D Object Detectors Generalize This paper has been accpeted by Conference on Computer Vision and Pattern Rec

Xiangyu Chen 101 Jan 02, 2023
Repository for the paper "PoseAug: A Differentiable Pose Augmentation Framework for 3D Human Pose Estimation", CVPR 2021.

PoseAug: A Differentiable Pose Augmentation Framework for 3D Human Pose Estimation Code repository for the paper: PoseAug: A Differentiable Pose Augme

Pyjcsx 328 Dec 17, 2022
Tools for computational pathology

A toolkit for computational pathology and machine learning. View documentation Please cite our paper Installation There are several ways to install Pa

254 Dec 12, 2022
This repo contains the implementation of YOLOv2 in Keras with Tensorflow backend.

Easy training on custom dataset. Various backends (MobileNet and SqueezeNet) supported. A YOLO demo to detect raccoon run entirely in brower is accessible at https://git.io/vF7vI (not on Windows).

Huynh Ngoc Anh 1.7k Dec 24, 2022
1st place solution in CCF BDCI 2021 ULSEG challenge

1st place solution in CCF BDCI 2021 ULSEG challenge This is the source code of the 1st place solution for ultrasound image angioma segmentation task (

Chenxu Peng 30 Nov 22, 2022
A voice recognition assistant similar to amazon alexa, siri and google assistant.

kenyan-Siri Build an Artificial Assistant Full tutorial (video) To watch the tutorial, click on the image below Installation For windows users (run th

Alison Parker 3 Aug 19, 2022