PyGCL: A PyTorch Library for Graph Contrastive Learning

Overview

logo

PyGCL is a PyTorch-based open-source Graph Contrastive Learning (GCL) library, which features modularized GCL components from published papers, standardized evaluation, and experiment management.

Made with Python PyPI version Documentation Status GitHub stars GitHub forks Total lines visitors


What is Graph Contrastive Learning?

Graph Contrastive Learning (GCL) establishes a new paradigm for learning graph representations without human annotations. A typical GCL algorithm firstly constructs multiple graph views via stochastic augmentation of the input and then learns representations by contrasting positive samples against negative ones.

👉 For a general introduction of GCL, please refer to our paper and blog. Also, this repo tracks newly published GCL papers.

Install

Prerequisites

PyGCL needs the following packages to be installed beforehand:

  • Python 3.8+
  • PyTorch 1.9+
  • PyTorch-Geometric 1.7
  • DGL 0.7+
  • Scikit-learn 0.24+
  • Numpy
  • tqdm
  • NetworkX

Installation via PyPI

To install PyGCL with pip, simply run:

pip install PyGCL

Then, you can import GCL from your current environment.

A note regarding DGL

Currently the DGL team maintains two versions, dgl for CPU support and dgl-cu*** for CUDA support. Since pip treats them as different packages, it is hard for PyGCL to check for the version requirement of dgl. We have removed such dependency checks for dgl in our setup configuration and require the users to install a proper version by themselves.

Package Overview

Our PyGCL implements four main components of graph contrastive learning algorithms:

  • Graph augmentation: transforms input graphs into congruent graph views.
  • Contrasting architectures and modes: generate positive and negative pairs according to node and graph embeddings.
  • Contrastive objectives: computes the likelihood score for positive and negative pairs.
  • Negative mining strategies: improves the negative sample set by considering the relative similarity (the hardness) of negative sample.

We also implement utilities for training models, evaluating model performance, and managing experiments.

Implementations and Examples

For a quick start, please check out the examples folder. We currently implemented the following methods:

  • DGI (P. Veličković et al., Deep Graph Infomax, ICLR, 2019) [Example1, Example2]
  • InfoGraph (F.-Y. Sun et al., InfoGraph: Unsupervised and Semi-supervised Graph-Level Representation Learning via Mutual Information Maximization, ICLR, 2020) [Example]
  • MVGRL (K. Hassani et al., Contrastive Multi-View Representation Learning on Graphs, ICML, 2020) [Example1, Example2]
  • GRACE (Y. Zhu et al., Deep Graph Contrastive Representation Learning, [email protected], 2020) [Example]
  • GraphCL (Y. You et al., Graph Contrastive Learning with Augmentations, NeurIPS, 2020) [Example]
  • SupCon (P. Khosla et al., Supervised Contrastive Learning, NeurIPS, 2020) [Example]
  • HardMixing (Y. Kalantidis et al., Hard Negative Mixing for Contrastive Learning, NeurIPS, 2020)
  • DCL (C.-Y. Chuang et al., Debiased Contrastive Learning, NeurIPS, 2020)
  • HCL (J. Robinson et al., Contrastive Learning with Hard Negative Samples, ICLR, 2021)
  • Ring (M. Wu et al., Conditional Negative Sampling for Contrastive Learning of Visual Representations, ICLR, 2021)
  • Exemplar (N. Zhao et al., What Makes Instance Discrimination Good for Transfer Learning?, ICLR, 2021)
  • BGRL (S. Thakoor et al., Bootstrapped Representation Learning on Graphs, arXiv, 2021) [Example1, Example2]
  • G-BT (P. Bielak et al., Graph Barlow Twins: A Self-Supervised Representation Learning Framework for Graphs, arXiv, 2021) [Example]
  • VICReg (A. Bardes et al., VICReg: Variance-Invariance-Covariance Regularization for Self-Supervised Learning, arXiv, 2021)

Building Your Own GCL Algorithms

Besides try the above examples for node and graph classification tasks, you can also build your own graph contrastive learning algorithms straightforwardly.

Graph Augmentation

In GCL.augmentors, PyGCL provides the Augmentor base class, which offers a universal interface for graph augmentation functions. Specifically, PyGCL implements the following augmentation functions:

Augmentation Class name
Edge Adding (EA) EdgeAdding
Edge Removing (ER) EdgeRemoving
Feature Masking (FM) FeatureMasking
Feature Dropout (FD) FeatureDropout
Edge Attribute Masking (EAR) EdgeAttrMasking
Personalized PageRank (PPR) PPRDiffusion
Markov Diffusion Kernel (MDK) MarkovDiffusion
Node Dropping (ND) NodeDropping
Node Shuffling (NS) NodeShuffling
Subgraphs induced by Random Walks (RWS) RWSampling
Ego-net Sampling (ES) Identity

Call these augmentation functions by feeding with a Graph in a tuple form of node features, edge index, and edge features (x, edge_index, edge_attrs) will produce corresponding augmented graphs.

Composite Augmentations

PyGCL supports composing arbitrary numbers of augmentations together. To compose a list of augmentation instances augmentors, you need to use the Compose class:

import GCL.augmentors as A

aug = A.Compose([A.EdgeRemoving(pe=0.3), A.FeatureMasking(pf=0.3)])

You can also use the RandomChoice class to randomly draw a few augmentations each time:

import GCL.augmentors as A

aug = A.RandomChoice([A.RWSampling(num_seeds=1000, walk_length=10),
                      A.NodeDropping(pn=0.1),
                      A.FeatureMasking(pf=0.1),
                      A.EdgeRemoving(pe=0.1)],
                     num_choices=1)

Customizing Your Own Augmentation

You can write your own augmentation functions by inheriting the base Augmentor class and defining the augment function.

Contrasting Architectures and Modes

Existing GCL architectures could be grouped into two lines: negative-sample-based methods and negative-sample-free ones.

  • Negative-sample-based approaches can either have one single branch or two branches. In single-branch contrasting, we only need to construct one graph view and perform contrastive learning within this view. In dual-branch models, we generate two graph views and perform contrastive learning within and across views.
  • Negative-sample-free approaches eschew the need of explicit negative samples. Currently, PyGCL supports the bootstrap-style contrastive learning as well contrastive learning within embeddings (such as Barlow Twins and VICReg).
Contrastive architectures Supported contrastive modes Need negative samples Class name Examples
Single-branch contrasting G2L only SingleBranchContrast DGI, InfoGraph
Dual-branch contrasting L2L, G2G, and G2L DualBranchContrast GRACE
Bootstrapped contrasting L2L, G2G, and G2L BootstrapContrast BGRL
Within-embedding contrasting L2L and G2G WithinEmbedContrast GBT

Moreover, you can use add_extra_mask if you want to add positives or remove negatives. This function performs bitwise ADD to extra positive masks specified by extra_pos_mask and bitwise OR to extra negative masks specified by extra_neg_mask. It is helpful, for example, when you have supervision signals from labels and want to train the model in a semi-supervised manner.

Internally, PyGCL calls Sampler classes in GCL.models that receive embeddings and produce positive/negative masks. PyGCL implements three contrasting modes: (a) Local-Local (L2L), (b) Global-Global (G2G), and (c) Global-Local (G2L) modes. L2L and G2G modes contrast embeddings at the same scale and the latter G2L one performs cross-scale contrasting. To implement your own GCL model, you may also use these provided sampler models:

Contrastive modes Class name
Same-scale contrasting (L2L and G2G) SameScaleSampler
Cross-scale contrasting (G2L) CrossScaleSampler
  • For L2L and G2G, embedding pairs of the same node/graph in different views constitute positive pairs. You can refer to GRACE and GraphCL for examples.
  • For G2L, node-graph embedding pairs form positives. Note that for single-graph datasets, the G2L mode requires explicit negative sampling (otherwise no negatives for contrasting). You can refer to DGI for an example.
  • Some models (e.g., GRACE) add extra intra-view negative samples. You may manually call sampler.add_intraview_negs to enlarge the negative sample set.
  • Note that the bootstrapping latent model involves some special model design (asymmetric online/offline encoders and momentum weight updates). You may refer to BGRL for details.

Contrastive Objectives

In GCL.losses, PyGCL implements the following contrastive objectives:

Contrastive objectives Class name
InfoNCE loss InfoNCE
Jensen-Shannon Divergence (JSD) loss JSD
Triplet Margin (TM) loss Triplet
Bootstrapping Latent (BL) loss BootstrapLatent
Barlow Twins (BT) loss BarlowTwins
VICReg loss VICReg

All these objectives are able to contrast any arbitrary positive and negative pairs, except for Barlow Twins and VICReg losses that perform contrastive learning within embeddings. Moreover, for InfoNCE and Triplet losses, we further provide SP variants that computes contrastive objectives given only one positive pair per sample to speed up computation and avoid excessive memory consumption.

Negative Sampling Strategies

PyGCL further implements several negative sampling strategies:

Negative sampling strategies Class name
Subsampling GCL.models.SubSampler
Hard negative mixing GCL.models.HardMixing
Conditional negative sampling GCL.models.Ring
Debiased contrastive objective GCL.losses.DebiasedInfoNCE , GCL.losses.DebiasedJSD
Hardness-biased negative sampling GCL.losses.HardnessInfoNCE, GCL.losses.HardnessJSD

The former three models serve as an additional sampling step similar to existing Sampler ones and can be used in conjunction with any objectives. The last two objectives are only for InfoNCE and JSD losses.

Utilities

PyGCL provides a variety of evaluator functions to evaluate the embedding quality:

Evaluator Class name
Logistic regression LREvaluator
Support vector machine SVMEvaluator
Random forest RFEvaluator

To use these evaluators, you first need to generate dataset splits by get_split (random split) or by from_predefined_split (according to preset splits).

Contribution

Feel free to open an issue should you find anything unexpected or create pull requests to add your own work! We are motivated to continuously make PyGCL even better.

Citation

Please cite our paper if you use this code in your own work:

@article{Zhu:2021tu,
author = {Zhu, Yanqiao and Xu, Yichen and Liu, Qiang and Wu, Shu},
title = {{An Empirical Study of Graph Contrastive Learning}},
journal = {arXiv.org},
year = {2021},
eprint = {2109.01116v1},
eprinttype = {arxiv},
eprintclass = {cs.LG},
month = sep,
}
Owner
PyGCL
A PyTorch Library for Graph Contrastive Learning
PyGCL
Learning with Noisy Labels via Sparse Regularization, ICCV2021

Learning with Noisy Labels via Sparse Regularization This repository is the official implementation of [Learning with Noisy Labels via Sparse Regulari

Xiong Zhou 38 Oct 20, 2022
Various operations like path tracking, counting, etc by using yolov5

Object-tracing-with-YOLOv5 Various operations like path tracking, counting, etc by using yolov5

Pawan Valluri 5 Nov 28, 2022
Hooks for VCOCO

Verbs in COCO (V-COCO) Dataset This repository hosts the Verbs in COCO (V-COCO) dataset and associated code to evaluate models for the Visual Semantic

Saurabh Gupta 131 Nov 24, 2022
A list of multi-task learning papers and projects.

This page contains a list of papers on multi-task learning for computer vision. Please create a pull request if you wish to add anything. If you are interested, consider reading our recent survey pap

svandenh 297 Dec 17, 2022
I tried to apply the CAM algorithm to YOLOv4 and it worked.

YOLOV4:You Only Look Once目标检测模型在pytorch当中的实现 2021年2月7日更新: 加入letterbox_image的选项,关闭letterbox_image后网络的map得到大幅度提升。 目录 性能情况 Performance 实现的内容 Achievement

55 Dec 05, 2022
This repository contains tutorials for the py4DSTEM Python package

py4DSTEM Tutorials This repository contains tutorials for the py4DSTEM Python package. For more information about py4DSTEM, including installation ins

11 Dec 23, 2022
Yolov5-opencv-cpp-python - Example of using ultralytics YOLO V5 with OpenCV 4.5.4, C++ and Python

yolov5-opencv-cpp-python Example of performing inference with ultralytics YOLO V

183 Jan 09, 2023
The official code for PRIMER: Pyramid-based Masked Sentence Pre-training for Multi-document Summarization

PRIMER The official code for PRIMER: Pyramid-based Masked Sentence Pre-training for Multi-document Summarization. PRIMER is a pre-trained model for mu

AI2 111 Dec 18, 2022
An LSTM for time-series classification

Update 10-April-2017 And now it works with Python3 and Tensorflow 1.1.0 Update 02-Jan-2017 I updated this repo. Now it works with Tensorflow 0.12. In

Rob Romijnders 391 Dec 27, 2022
Robustness between the worst and average case

Robustness between the worst and average case A repository that implements intermediate robustness training and evaluation from the NeurIPS 2021 paper

CMU Locus Lab 16 Dec 02, 2022
Isaac Gym Reinforcement Learning Environments

Isaac Gym Reinforcement Learning Environments

NVIDIA Omniverse 714 Jan 08, 2023
CyTran: Cycle-Consistent Transformers for Non-Contrast to Contrast CT Translation

CyTran: Cycle-Consistent Transformers for Non-Contrast to Contrast CT Translation We propose a novel approach to translate unpaired contrast computed

Nicolae Catalin Ristea 13 Jan 02, 2023
🧮 Matrix Factorization for Collaborative Filtering is just Solving an Adjoint Latent Dirichlet Allocation Model after All

Accompanying source code to the paper "Matrix Factorization for Collaborative Filtering is just Solving an Adjoint Latent Dirichlet Allocation Model A

Florian Wilhelm 39 Dec 03, 2022
DeepStruc is a Conditional Variational Autoencoder which can predict the mono-metallic nanoparticle from a Pair Distribution Function.

ChemRxiv | [Paper] XXX DeepStruc Welcome to DeepStruc, a Deep Generative Model (DGM) that learns the relation between PDF and atomic structure and the

Emil Thyge Skaaning Kjær 13 Aug 01, 2022
This is a project based on ConvNets used to identify whether a road is clean or dirty. We have used MobileNet as our base architecture and the weights are based on imagenet.

PROJECT TITLE: CLEAN/DIRTY ROAD DETECTION USING TRANSFER LEARNING Description: This is a project based on ConvNets used to identify whether a road is

Faizal Karim 3 Nov 06, 2022
The source code of the ICCV2021 paper "PIRenderer: Controllable Portrait Image Generation via Semantic Neural Rendering"

The source code of the ICCV2021 paper "PIRenderer: Controllable Portrait Image Generation via Semantic Neural Rendering"

Ren Yurui 261 Jan 09, 2023
A curated list of awesome resources combining Transformers with Neural Architecture Search

A curated list of awesome resources combining Transformers with Neural Architecture Search

Yash Mehta 173 Jan 03, 2023
An implementation of RetinaNet in PyTorch.

RetinaNet An implementation of RetinaNet in PyTorch. Installation Training COCO 2017 Pascal VOC Custom Dataset Evaluation Todo Credits Installation In

Conner Vercellino 297 Jan 04, 2023
[CVPR 2021] MetaSAug: Meta Semantic Augmentation for Long-Tailed Visual Recognition

MetaSAug: Meta Semantic Augmentation for Long-Tailed Visual Recognition (CVPR 2021) arXiv Prerequisite PyTorch = 1.2.0 Python3 torchvision PIL argpar

51 Nov 11, 2022
A collection of papers about Transformer in the field of medical image analysis.

A collection of papers about Transformer in the field of medical image analysis.

Junyu Chen 377 Jan 05, 2023