Pytorch implementation of paper: "NeurMiPs: Neural Mixture of Planar Experts for View Synthesis"

Related tags

Deep Learningneurmips
Overview

NeurMips: Neural Mixture of Planar Experts for View Synthesis

This is the official repo for PyTorch implementation of paper "NeurMips: Neural Mixture of Planar Experts for View Synthesis", CVPR 2022.

Paper | Project page | Video

Overview

🌱 Prerequisites

  • OS: Ubuntu 20.04.4 LTS
  • GPU: NVIDIA TITAN RTX
  • Python package manager conda

🌱 Setup

Datasets

Download and put datasets under folder data/ by running:

bash run/dataset.sh

For more details of file structure and camera convention, please refer to Dataset.

Environment

Install all python packages for training and evaluation with conda environment setup file:

conda env create -f environment.yml
conda activate neurmips

CUDA extension installation

Compile the extension directly by running:

cd cuda/
python setup.py develop

Note that if you need to modify this CUDA code, simply compile again after your modification.

Pretrained models (optional)

Download pretrained model weights for evaluation without training from scratch:

bash run/checkpoints.sh

🌱 Usage

We provide hyperparameters for each experiment in config file configs/*.yaml, which is used for training and evaluation. For example, replica-kitchen.yaml corresponds to Replica dataset Kitchen scene, and tat-barn.yaml corresponds to Tanks&Temple dataset Barn scene.

Training

Train the teacher and experts model by running:

bash run/train.sh [config]
# example: bash run/train.sh replica-kitchen

Evaluation

Render testing images and evaluate metrics (i.e. PSNR, SSIM, LPIPS) by running:

bash run/eval.sh [config]
# example: bash run/eval.sh replica-kitchen

The rendered images are put under folder output_images/[config]/experts/color/valid/

CUDA Acceleration

To render testing images with optimized CUDA code by running:

bash run/eval_fast.sh [config]
# example: bash run/eval_fast.sh replica-kitchen

The rendered images are put under folder output_images/[config]/experts_cuda/color/valid/

BibTex

@inproceedings{lin2022neurmips,
  title={NeurMiPs: Neural Mixture of Planar Experts for View Synthesis},
  author = {Lin, Zhi-Hao and Ma, Wei-Chiu and Hsu, Hao-Yu and Wang, Yu-Chiang Frank and Wang, Shenlong},
  year={2022},
  booktitle={CVPR},
}
Owner
James Lin
NTUEE 2015~2019
James Lin
Explaining Deep Neural Networks - A comparison of different CAM methods based on an insect data set

Explaining Deep Neural Networks - A comparison of different CAM methods based on an insect data set This is the repository for the Deep Learning proje

Robert Krug 3 Feb 06, 2022
JORLDY an open-source Reinforcement Learning (RL) framework provided by KakaoEnterprise

Repository for Open Source Reinforcement Learning Framework JORLDY

Kakao Enterprise Corp. 330 Dec 30, 2022
Official implementation of cosformer-attention in cosFormer: Rethinking Softmax in Attention

cosFormer Official implementation of cosformer-attention in cosFormer: Rethinking Softmax in Attention Update log 2022/2/28 Add core code License This

120 Dec 15, 2022
UnFlow: Unsupervised Learning of Optical Flow with a Bidirectional Census Loss

UnFlow: Unsupervised Learning of Optical Flow with a Bidirectional Census Loss This repository contains the TensorFlow implementation of the paper UnF

Simon Meister 270 Nov 06, 2022
Codes to pre-train T5 (Text-to-Text Transfer Transformer) models pre-trained on Japanese web texts

t5-japanese Codes to pre-train T5 (Text-to-Text Transfer Transformer) models pre-trained on Japanese web texts. The following is a list of models that

Kimio Kuramitsu 1 Dec 13, 2021
Package to compute Mauve, a similarity score between neural text and human text. Install with `pip install mauve-text`.

MAUVE MAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE

Krishna Pillutla 182 Jan 02, 2023
TUPÃ was developed to analyze electric field properties in molecular simulations

TUPÃ: Electric field analyses for molecular simulations What is TUPÃ? TUPÃ (pronounced as tu-pan) is a python algorithm that employs MDAnalysis engine

Marcelo D. Polêto 10 Jul 17, 2022
NATS-Bench: Benchmarking NAS Algorithms for Architecture Topology and Size

NATS-Bench: Benchmarking NAS Algorithms for Architecture Topology and Size Xuanyi Dong, Lu Liu, Katarzyna Musial, Bogdan Gabrys in IEEE Transactions o

D-X-Y 137 Dec 20, 2022
pytorch implementation of GPV-Pose

GPV-Pose Pytorch implementation of GPV-Pose: Category-level Object Pose Estimation via Geometry-guided Point-wise Voting. (link) UPDATE A new version

40 Dec 01, 2022
Pytorch implementation of the unsupervised object discovery method LOST.

LOST Pytorch implementation of the unsupervised object discovery method LOST. More details can be found in the paper: Localizing Objects with Self-Sup

Valeo.ai 189 Dec 25, 2022
AI-based, context-driven network device ranking

Batea A batea is a large shallow pan of wood or iron traditionally used by gold prospectors for washing sand and gravel to recover gold nuggets. Batea

Secureworks Taegis VDR 269 Nov 26, 2022
ERISHA is a mulitilingual multispeaker expressive speech synthesis framework. It can transfer the expressivity to the speaker's voice for which no expressive speech corpus is available.

ERISHA: Multilingual Multispeaker Expressive Text-to-Speech Library ERISHA is a multilingual multispeaker expressive speech synthesis framework. It ca

Ajinkya Kulkarni 43 Nov 27, 2022
Official implementation of the ICLR 2021 paper

You Only Need Adversarial Supervision for Semantic Image Synthesis Official PyTorch implementation of the ICLR 2021 paper "You Only Need Adversarial S

Bosch Research 272 Dec 28, 2022
A Distributional Approach To Controlled Text Generation

A Distributional Approach To Controlled Text Generation This is the repository code for the ICLR 2021 paper "A Distributional Approach to Controlled T

NAVER 102 Jan 07, 2023
A framework that allows people to write their own Rocket League bots.

YOU PROBABLY SHOULDN'T PULL THIS REPO Bot Makers Read This! If you just want to make a bot, you don't need to be here. Instead, start with one of thes

543 Dec 20, 2022
Breaking the Dilemma of Medical Image-to-image Translation

Breaking the Dilemma of Medical Image-to-image Translation Supervised Pix2Pix and unsupervised Cycle-consistency are two modes that dominate the field

Kid Liet 86 Dec 21, 2022
Improving Query Representations for DenseRetrieval with Pseudo Relevance Feedback:A Reproducibility Study.

APR The repo for the paper Improving Query Representations for DenseRetrieval with Pseudo Relevance Feedback:A Reproducibility Study. Environment setu

ielab 8 Nov 26, 2022
Pytorch implementation of the paper DocEnTr: An End-to-End Document Image Enhancement Transformer.

DocEnTR Description Pytorch implementation of the paper DocEnTr: An End-to-End Document Image Enhancement Transformer. This model is implemented on to

Mohamed Ali Souibgui 74 Jan 07, 2023
Topic Discovery via Latent Space Clustering of Pretrained Language Model Representations

TopClus The source code used for Topic Discovery via Latent Space Clustering of Pretrained Language Model Representations, published in WWW 2022. Requ

Yu Meng 63 Dec 18, 2022
Optimal space decomposition based-product quantization for approximate nearest neighbor search

Optimal space decomposition based-product quantization for approximate nearest neighbor search Abstract Product quantization(PQ) is an effective neare

Mylove 1 Nov 19, 2021