Evolutionary Population Curriculum for Scaling Multi-Agent Reinforcement Learning

Overview

Evolutionary Population Curriculum for Scaling Multi-Agent Reinforcement Learning

This is the code for implementing the MADDPG algorithm presented in the paper: Evolutionary Population Curriculum for Scaling Multi-Agent Reinforcement Learning. It is configured to be run in conjunction with environments from the (https://github.com/qian18long/epciclr2020/tree/master/mpe_local). We show our gif results here (https://sites.google.com/view/epciclr2020/). Note: this codebase has been restructured since the original paper, and the results may vary from those reported in the paper.

Installation

  • Install tensorflow 1.13.1
pip install tensorflow==1.13.1
  • Install OpenAI gym
pip install gym==0.13.0
  • Install other dependencies
pip install joblib imageio

Case study: Multi-Agent Particle Environments

We demonstrate here how the code can be used in conjunction with the(https://github.com/qian18long/epciclr2020/tree/master/mpe_local). It is based on(https://github.com/openai/multiagent-particle-envs)

Quick start

  • See train_grassland_epc.sh, train_adversarial_epc.sh and train_food_collect_epc.sh for the EPC algorithm for scenario grassland, adversarial and food_collect in the example setting presented in our paper.

Command-line options

Environment options

  • --scenario: defines which environment in the MPE is to be used (default: "grassland")

  • --map-size: The size of the environment. 1 if normal and 2 otherwise. (default: "normal")

  • --sight: The agent's visibility radius. (default: 100)

  • --alpha: Reward shared weight. (default: 0.0)

  • --max-episode-len maximum length of each episode for the environment (default: 25)

  • --num-episodes total number of training episodes (default: 200000)

  • --num-good: number of good agents in the scenario (default: 2)

  • --num-adversaries: number of adversaries in the environment (default: 2)

  • --num-food: number of food(resources) in the scenario (default: 4)

  • --good-policy: algorithm used for the 'good' (non adversary) policies in the environment (default: "maddpg"; options: {"att-maddpg", "maddpg", "PC", "mean-field"})

  • --adv-policy: algorithm used for the adversary policies in the environment (default: "maddpg"; options: {"att-maddpg", "maddpg", "PC", "mean-field"})

Core training parameters

  • --lr: learning rate (default: 1e-2)

  • --gamma: discount factor (default: 0.95)

  • --batch-size: batch size (default: 1024)

  • --num-units: number of units in the MLP (default: 64)

  • --good-num-units: number of units in the MLP of good agents, if not providing it will be num-units.

  • --adv-num-units: number of units in the MLP of adversarial agents, if not providing it will be num-units.

  • --n_cpu_per_agent: cpu usage per agent (default: 1)

  • --good-share-weights: good agents share weights of the agents encoder within the model.

  • --adv-share-weights: adversarial agents share weights of the agents encoder within the model.

  • --use-gpu: Use GPU for training (default: False)

  • --n-envs: number of environments instances in parallelization

Checkpointing

  • --save-dir: directory where intermediate training results and model will be saved (default: "/test/")

  • --save-rate: model is saved every time this number of episodes has been completed (default: 1000)

  • --load-dir: directory where training state and model are loaded from (default: "test")

Evaluation

  • --restore: restores previous training state stored in load-dir (or in save-dir if no load-dir has been provided), and continues training (default: False)

  • --display: displays to the screen the trained policy stored in load-dir (or in save-dir if no load-dir has been provided), but does not continue training (default: False)

  • --save-gif-data: Save the gif examples to the save-dir (default: False)

  • --render-gif: Render the gif in the load-dir (default: False)

EPC options

  • --initial-population: initial population size in the first stage

  • --num-selection: size of the population selected for reproduction

  • --num-stages: number of stages

  • --stage-num-episodes: number of training episodes in each stage

  • --stage-n-envs: number of environments instances in parallelization in each stage

  • --test-num-episodes: number of episodes for the competing

Example scripts

  • .maddpg_o/experiments/train_normal.py: apply the train_helpers.py for MADDPG, Att-MADDPG and mean-field training
  • .maddpg_o/experiments/train_x2.py: apply a single step doubling training

  • .maddpg_o/experiments/train_mix_match.py: mix match of the good agents in --sheep-init-load-dirs and adversarial agents in '--wolf-init-load-dirs' for model agents evaluation.

  • .maddpg_o/experiments/train_epc.py: train the scheduled EPC algorithm.

  • .maddpg_o/experiments/compete.py: evaluate different models by competition

Paper citation

@inproceedings{epciclr2020,
  author = {Qian Long and Zihan Zhou and Abhinav Gupta and Fei Fang and Yi Wu and Xiaolong Wang},
  title = {Evolutionary Population Curriculum for Scaling Multi-Agent Reinforcement Learning},
  booktitle = {International Conference on Learning Representations},
  year = {2020}
}
This is the source code of the 1st place solution for segmentation task (with Dice 90.32%) in 2021 CCF BDCI challenge.

1st place solution in CCF BDCI 2021 ULSEG challenge This is the source code of the 1st place solution for ultrasound image angioma segmentation task (

Chenxu Peng 30 Nov 22, 2022
Partial implementation of ODE-GAN technique from the paper Training Generative Adversarial Networks by Solving Ordinary Differential Equations

ODE GAN (Prototype) in PyTorch Partial implementation of ODE-GAN technique from the paper Training Generative Adversarial Networks by Solving Ordinary

Somshubra Majumdar 15 Feb 10, 2022
Equivariant GNN for the prediction of atomic multipoles up to quadrupoles.

Equivariant Graph Neural Network for Atomic Multipoles Description Repository for the Model used in the publication 'Learning Atomic Multipoles: Predi

16 Nov 22, 2022
Reviving Iterative Training with Mask Guidance for Interactive Segmentation

This repository provides the source code for training and testing state-of-the-art click-based interactive segmentation models with the official PyTorch implementation

Visual Understanding Lab @ Samsung AI Center Moscow 406 Jan 01, 2023
Code for unmixing audio signals in four different stems "drums, bass, vocals, others". The code is adapted from "Jukebox: A Generative Model for Music"

Status: Archive (code is provided as-is, no updates expected) Disclaimer This code is a based on "Jukebox: A Generative Model for Music" Paper We adju

Wadhah Zai El Amri 24 Dec 29, 2022
Code release for "COTR: Correspondence Transformer for Matching Across Images"

COTR: Correspondence Transformer for Matching Across Images This repository contains the inference code for COTR. We plan to release the training code

UBC Computer Vision Group 360 Jan 06, 2023
Large scale embeddings on a single machine.

Marius Marius is a system under active development for training embeddings for large-scale graphs on a single machine. Training on large scale graphs

Marius 107 Jan 03, 2023
Shitty gaze mouse controller

demo.mp4 shitty_gaze_mouse_cotroller install tensofflow, cv2 run the main.py and as it starts it will collect data so first raise your left eyebrow(bo

16 Aug 30, 2022
Source code for the paper "Periodic Traveling Waves in an Integro-Difference Equation With Non-Monotonic Growth and Strong Allee Effect"

Source code for the paper "Periodic Traveling Waves in an Integro-Difference Equation With Non-Monotonic Growth and Strong Allee Effect" by Michael Ne

M Nestor 1 Apr 19, 2022
A small library for creating and manipulating custom JAX Pytree classes

Treeo A small library for creating and manipulating custom JAX Pytree classes Light-weight: has no dependencies other than jax. Compatible: Treeo Tree

Cristian Garcia 58 Nov 23, 2022
TensorFlow implementation of PHM (Parameterization of Hypercomplex Multiplication)

Parameterization of Hypercomplex Multiplications (PHM) This repository contains the TensorFlow implementation of PHM (Parameterization of Hypercomplex

Aston Zhang 9 Oct 26, 2022
GRaNDPapA: Generator of Rad Names from Decent Paper Acronyms

GRaNDPapA: Generator of Rad Names from Decent Paper Acronyms Trying to publish a new machine learning model and can't write a decent title for your pa

264 Nov 08, 2022
A set of Deep Reinforcement Learning Agents implemented in Tensorflow.

Deep Reinforcement Learning Agents This repository contains a collection of reinforcement learning algorithms written in Tensorflow. The ipython noteb

Arthur Juliani 2.2k Jan 01, 2023
TensorFlow2 Classification Model Zoo playing with TensorFlow2 on the CIFAR-10 dataset.

Training CIFAR-10 with TensorFlow2(TF2) TensorFlow2 Classification Model Zoo. I'm playing with TensorFlow2 on the CIFAR-10 dataset. Architectures LeNe

Chia-Hung Yuan 16 Sep 27, 2022
Machine-in-the-Loop Rewriting for Creative Image Captioning

Machine-in-the-Loop Rewriting for Creative Image Captioning Data Annotated sources of data used in the paper: Data Source URL Mohammed et al. Link Gor

Vishakh P 6 Jul 24, 2022
Regression Metrics Calculation Made easy for tensorflow2 and scikit-learn

Regression Metrics Installation To install the package from the PyPi repository you can execute the following command: pip install regressionmetrics I

Ashish Patel 11 Dec 16, 2022
Does MAML Only Work via Feature Re-use? A Data Set Centric Perspective

Does-MAML-Only-Work-via-Feature-Re-use-A-Data-Set-Centric-Perspective Does MAML Only Work via Feature Re-use? A Data Set Centric Perspective Installin

2 Nov 07, 2022
Temporal-Relational CrossTransformers

Temporal-Relational Cross-Transformers (TRX) This repo contains code for the method introduced in the paper: Temporal-Relational CrossTransformers for

83 Dec 12, 2022
PyTorch implementation of SimSiam: Exploring Simple Siamese Representation Learning

SimSiam: Exploring Simple Siamese Representation Learning This is a PyTorch implementation of the SimSiam paper: @Article{chen2020simsiam, author =

Facebook Research 834 Dec 30, 2022
Official PyTorch implementation of the ICRA 2021 paper: Adversarial Differentiable Data Augmentation for Autonomous Systems.

Adversarial Differentiable Data Augmentation This repository provides the official PyTorch implementation of the ICRA 2021 paper: Adversarial Differen

Manli 3 Oct 15, 2022