Pytorch code for our paper Beyond ImageNet Attack: Towards Crafting Adversarial Examples for Black-box Domains)

Overview

Beyond ImageNet Attack: Towards Crafting Adversarial Examples for Black-box Domains (ICLR'2022)

This is the Pytorch code for our paper Beyond ImageNet Attack: Towards Crafting Adversarial Examples for Black-box Domains). In this paper, with only the knowledge of the ImageNet domain, we propose a Beyond ImageNet Attack (BIA) to investigate the transferability towards black-box domains (unknown classification tasks).

Requirement

  • Python 3.7
  • Pytorch 1.8.0
  • torchvision 0.9.0
  • numpy 1.20.2
  • scipy 1.7.0
  • pandas 1.3.0
  • opencv-python 4.5.2.54
  • joblib 0.14.1
  • Pillow 6.1

Dataset

images

  • Download the ImageNet training dataset.

  • Download the testing dataset.

Note: After downloading CUB-200-2011, Standford Cars and FGVC Aircraft, you should set the "self.rawdata_root" (DCL_finegrained/config.py: lines 59-75) to your saved path.

Target model

The checkpoint of target model should be put into model folder.

  • CUB-200-2011, Stanford Cars and FGVC AirCraft can be downloaded from here.
  • CIFAR-10, CIFAR-100, STL-10 and SVHN can be automatically downloaded.
  • ImageNet pre-trained models are available at torchvision.

Pretrained-Generators

framework Adversarial generators are trained against following four ImageNet pre-trained models.

  • VGG19
  • VGG16
  • ResNet152
  • DenseNet169

After finishing training, the resulting generator will be put into saved_models folder. You can also download our pretrained-generator from here.

Train

Train the generator using vanilla BIA (RN: False, DA: False)

python train.py --model_type vgg16 --train_dir your_imagenet_path --RN False --DA False

your_imagenet_path is the path where you download the imagenet training set.

Evaluation

Evaluate the performance of vanilla BIA (RN: False, DA: False)

python eval.py --model_type vgg16 --RN False --DA False

Citing this work

If you find this work is useful in your research, please consider citing:

@inproceedings{Zhang2022BIA,
  author    = {Qilong Zhang and
               Xiaodan Li and
               Yuefeng Chen and
               Jingkuan Song and
               Lianli Gao and
               Yuan He and
               Hui Xue},
  title     = {Beyond ImageNet Attack: Towards Crafting Adversarial Examples for Black-box Domains},
  Booktitle = {International Conference on Learning Representations},
  year      = {2022}
}

Acknowledge

Thank @aaron-xichen and @Muzammal-Naseer for sharing their codes.

You might also like...
Explainer for black box models that predict molecule properties

Explaining why that molecule exmol is a package to explain black-box predictions of molecules. The package uses model agnostic explanations to help us

This is the repository for paper NEEDLE: Towards Non-invertible Backdoor Attack to Deep Learning Models.

This is the repository for paper NEEDLE: Towards Non-invertible Backdoor Attack to Deep Learning Models.

Iterative Normalization: Beyond Standardization towards Efficient Whitening

IterNorm Code for reproducing the results in the following paper: Iterative Normalization: Beyond Standardization towards Efficient Whitening Lei Huan

This is the official code for the paper
This is the official code for the paper "Ad2Attack: Adaptive Adversarial Attack for Real-Time UAV Tracking".

Ad^2Attack:Adaptive Adversarial Attack on Real-Time UAV Tracking Demo video 📹 Our video on bilibili demonstrates the test results of Ad^2Attack on se

Code for the CVPR2022 paper
Code for the CVPR2022 paper "Frequency-driven Imperceptible Adversarial Attack on Semantic Similarity"

Introduction This is an official release of the paper "Frequency-driven Imperceptible Adversarial Attack on Semantic Similarity" (arxiv link). Abstrac

[CVPR 2022 Oral] Crafting Better Contrastive Views for Siamese Representation Learning
[CVPR 2022 Oral] Crafting Better Contrastive Views for Siamese Representation Learning

Crafting Better Contrastive Views for Siamese Representation Learning (CVPR 2022 Oral) 2022-03-29: The paper was selected as a CVPR 2022 Oral paper! 2

Pre-trained model, code, and materials from the paper
Pre-trained model, code, and materials from the paper "Impact of Adversarial Examples on Deep Learning Models for Biomedical Image Segmentation" (MICCAI 2019).

Adaptive Segmentation Mask Attack This repository contains the implementation of the Adaptive Segmentation Mask Attack (ASMA), a targeted adversarial

A PyTorch implementation of the paper Mixup: Beyond Empirical Risk Minimization in PyTorch
A PyTorch implementation of the paper Mixup: Beyond Empirical Risk Minimization in PyTorch

Mixup: Beyond Empirical Risk Minimization in PyTorch This is an unofficial PyTorch implementation of mixup: Beyond Empirical Risk Minimization. The co

Pythonic particle-based (super-droplet) warm-rain/aqueous-chemistry cloud microphysics package with box, parcel & 1D/2D prescribed-flow examples in Python, Julia and Matlab
Pythonic particle-based (super-droplet) warm-rain/aqueous-chemistry cloud microphysics package with box, parcel & 1D/2D prescribed-flow examples in Python, Julia and Matlab

PySDM PySDM is a package for simulating the dynamics of population of particles. It is intended to serve as a building block for simulation systems mo

Comments
  • About the comparative methods

    About the comparative methods

    Thank you for your insightful work! In Table3, I want to know that how to perform PGD or DIM on CUB with source models pretrained on ImageNet. Thank you~

    opened by lwmming 6
  • cursor already registered in Tk_GetCursor Aborted (core dumped)

    cursor already registered in Tk_GetCursor Aborted (core dumped)

    python train.py --model_type vgg16 --RN False --DA False

    I tried the above default training, but the error occurred at the end of the batch (epoch 1) training. Can you help debug this please?

    opened by hoonsyang 2
  • missing file

    missing file

    https://github.com/Alibaba-AAIG/Beyond-ImageNet-Attack/blob/7e8b1b8ec5728ebc01723f2c444bf2d5275ee7be/DCL_finegrained/LoadModel.py#L6 NameError: name 'pretrainedmodels' is not defined`

    opened by nkv1995 2
  • when computing cosine similarity

    when computing cosine similarity

    Hi! this is more of a question for the elegant work you have here but less of an issue.

    So when you take cosine similarity (which is to be decreased during training) between two feature maps, you take,

    loss = torch.cosine_similarity((adv_out_slice*attention).reshape(adv_out_slice.shape[0], -1), 
                                (img_out_slice*attention).reshape(img_out_slice.shape[0], -1)).mean()
    

    and that's to compare two flatten vectors, each of which is the flattened feature maps of size (N feature channels, width, height).

    I wonder why not comparing the flattened feature maps with respect to each channel, and then take the average across channels? To me, you're comparing two vectors that are (Nwidthheight)-dimensional, which is not so straightforward to me. Thanks in advance for any intuition behind!

    opened by juliuswang0728 1
Releases(pretrained_models)
Owner
Alibaba-AAIG
Alibaba Artificial Intelligence Governance Laboratory
Alibaba-AAIG
Code for ICLR 2020 paper "VL-BERT: Pre-training of Generic Visual-Linguistic Representations".

VL-BERT By Weijie Su, Xizhou Zhu, Yue Cao, Bin Li, Lewei Lu, Furu Wei, Jifeng Dai. This repository is an official implementation of the paper VL-BERT:

Weijie Su 698 Dec 18, 2022
CN24 is a complete semantic segmentation framework using fully convolutional networks

Build status: master (production branch): develop (development branch): Welcome to the CN24 GitHub repository! CN24 is a complete semantic segmentatio

Computer Vision Group Jena 123 Jul 14, 2022
Real-Time High-Resolution Background Matting

Real-Time High-Resolution Background Matting Official repository for the paper Real-Time High-Resolution Background Matting. Our model requires captur

Peter Lin 6.1k Jan 03, 2023
Learning Efficient Online 3D Bin Packing on Packing Configuration Trees

Learning Efficient Online 3D Bin Packing on Packing Configuration Trees This repository is being continuously updated, please stay tuned! Any code con

86 Dec 28, 2022
Codebase for the solution that won first place and was awarded the most human-like agent in the 2021 NeurIPS Competition MineRL BASALT Challenge.

KAIROS MineRL BASALT Codebase for the solution that won first place and was awarded the most human-like agent in the 2021 NeurIPS Competition MineRL B

Vinicius G. Goecks 37 Oct 30, 2022
Inferring Lexicographically-Ordered Rewards from Preferences

Inferring Lexicographically-Ordered Rewards from Preferences Code author: Alihan Hüyük ([e

Alihan Hüyük 1 Feb 13, 2022
Fewshot-face-translation-GAN - Generative adversarial networks integrating modules from FUNIT and SPADE for face-swapping.

Few-shot face translation A GAN based approach for one model to swap them all. The table below shows our priliminary face-swapping results requiring o

768 Dec 24, 2022
4st place solution for the PBVS 2022 Multi-modal Aerial View Object Classification Challenge - Track 1 (SAR) at PBVS2022

A Two-Stage Shake-Shake Network for Long-tailed Recognition of SAR Aerial View Objects 4st place solution for the PBVS 2022 Multi-modal Aerial View Ob

LinpengPan 5 Nov 09, 2022
Einshape: DSL-based reshaping library for JAX and other frameworks.

Einshape: DSL-based reshaping library for JAX and other frameworks. The jnp.einsum op provides a DSL-based unified interface to matmul and tensordot o

DeepMind 62 Nov 30, 2022
CS5242_2021 - Neural Networks and Deep Learning, NUS CS5242, 2021

CS5242_2021 Neural Networks and Deep Learning, NUS CS5242, 2021 Cloud Machine #1 : Google Colab (Free GPU) Follow this Notebook installation : https:/

Xavier Bresson 165 Oct 25, 2022
Python scripts for performing stereo depth estimation using the MobileStereoNet model in ONNX

ONNX-MobileStereoNet Python scripts for performing stereo depth estimation using the MobileStereoNet model in ONNX Stereo depth estimation on the cone

Ibai Gorordo 23 Nov 29, 2022
Converting CPT to bert form for use

cpt-encoder 将CPT转成bert形式使用 说明 刚刚刷到又出了一种模型:CPT,看论文显示,在很多中文任务上性能比mac bert还好,就迫不及待想把它用起来。 根据对源码的研究,发现该模型在做nlu建模时主要用的encoder部分,也就是bert,因此我将这部分权重转为bert权重类型

黄辉 1 Oct 14, 2021
WormMovementSimulation - 3D Simulation of Worm Body Movement with Neurons attached to its body

Generate 3D Locomotion Data This module is intended to create 2D video trajector

1 Aug 09, 2022
ViSD4SA, a Vietnamese Span Detection for Aspect-based sentiment analysis dataset

UIT-ViSD4SA PACLIC 35 General Introduction This repository contains the data of the paper: Span Detection for Vietnamese Aspect-Based Sentiment Analys

Nguyễn Thị Thanh Kim 5 Nov 13, 2022
Bytedance Inc. 2.5k Jan 06, 2023
Official Implementation for Fast Training of Neural Lumigraph Representations using Meta Learning.

Fast Training of Neural Lumigraph Representations using Meta Learning Project Page | Paper | Data Alexander W. Bergman, Petr Kellnhofer, Gordon Wetzst

Alex 39 Oct 08, 2022
A python interface for training Reinforcement Learning bots to battle on pokemon showdown

The pokemon showdown Python environment A Python interface to create battling pokemon agents. poke-env offers an easy-to-use interface for creating ru

Haris Sahovic 184 Dec 30, 2022
Sound Source Localization for AI Grand Challenge 2021

Sound-Source-Localization Sound Source Localization study for AI Grand Challenge 2021 (sponsored by NC Soft Vision Lab) Preparation 1. Place the data-

sanghoon 19 Mar 29, 2022
Differentiable Optimizers with Perturbations in Pytorch

Differentiable Optimizers with Perturbations in PyTorch This contains a PyTorch implementation of Differentiable Optimizers with Perturbations in Tens

Jake Tuero 54 Jun 22, 2022
Code for "OctField: Hierarchical Implicit Functions for 3D Modeling (NeurIPS 2021)"

OctField(Jittor): Hierarchical Implicit Functions for 3D Modeling Introduction This repository is code release for OctField: Hierarchical Implicit Fun

55 Dec 08, 2022