Code for CMaskTrack R-CNN (proposed in Occluded Video Instance Segmentation)

Overview

CMaskTrack R-CNN for OVIS

This repo serves as the official code release of the CMaskTrack R-CNN model on the Occluded Video Instance Segmentation dataset described in the tech report:

Occluded Video Instance Segmentation

Jiyang Qi1,2*, Yan Gao2*, Yao Hu2, Xinggang Wang1, Xiaoyu Liu2,
Xiang Bai1, Serge Belongie3, Alan Yuille4, Philip Torr5, Song Bai2,5 πŸ“§
1Huazhong University of Science and Technology 2Alibaba Group 3University of Copenhagen
4Johns Hopkins University 5University of Oxford

In this work, we collect a large-scale dataset called OVIS for Occluded Video Instance Segmentation. OVIS consists of 296k high-quality instance masks from 25 semantic categories, where object occlusions usually occur. While our human vision systems can understand those occluded instances by contextual reasoning and association, our experiments suggest that current video understanding systems cannot, which reveals that we are still at a nascent stage for understanding objects, instances, and videos in a real-world scenario.

We also present a simple plug-and-play module that performs temporal feature calibration to complement missing object cues caused by occlusion.

Some annotation examples can be seen below:

2592056 2930398 2932104 3021160

For more details about the dataset, please refer to our paper or website.

Model training and evaluation

Installation

This repo is built based on MaskTrackRCNN. A customized COCO API for the OVIS dataset is also provided.

You can use following commands to create conda env with all dependencies.

conda create -n cmtrcnn python=3.6 -y
conda activate cmtrcnn

conda install -c pytorch pytorch=1.3.1 torchvision=0.2.2 cudatoolkit=10.1 -y
pip install -r requirements.txt
pip install git+https://github.com/qjy981010/cocoapi.git#"egg=pycocotools&subdirectory=PythonAPI"

bash compile.sh

Data preparation

  1. Download OVIS from our website.
  2. Symlink the train/validation dataset to data/OVIS/ folder. Put COCO-style annotations under data/annotations.
mmdetection
β”œβ”€β”€ mmdet
β”œβ”€β”€ tools
β”œβ”€β”€ configs
β”œβ”€β”€ data
β”‚   β”œβ”€β”€ OVIS
β”‚   β”‚   β”œβ”€β”€ train_images
β”‚   β”‚   β”œβ”€β”€ valid_images
β”‚   β”‚   β”œβ”€β”€ annotations
β”‚   β”‚   β”‚   β”œβ”€β”€ annotations_train.json
β”‚   β”‚   β”‚   β”œβ”€β”€ annotations_valid.json

Training

Our model is based on MaskRCNN-resnet50-FPN. The model is trained end-to-end on OVIS based on a MSCOCO pretrained checkpoint (mmlab link or google drive).

Run the command below to train the model.

CUDA_VISIBLE_DEVICES=0,1,2,3 python train.py configs/cmasktrack_rcnn_r50_fpn_1x_ovis.py --work_dir ./workdir/cmasktrack_rcnn_r50_fpn_1x_ovis --gpus 4

For reference to arguments such as learning rate and model parameters, please refer to configs/cmasktrack_rcnn_r50_fpn_1x_ovis.py.

Evaluation

Our pretrained model is available for download at Google Drive (comming soon). Run the following command to evaluate the model on OVIS.

CUDA_VISIBLE_DEVICES=0 python test_video.py configs/cmasktrack_rcnn_r50_fpn_1x_ovis.py [MODEL_PATH] --out [OUTPUT_PATH.pkl] --eval segm

A json file containing the predicted result will be generated as OUTPUT_PATH.pkl.json. OVIS currently only allows evaluation on the codalab server. Please upload the generated result to codalab server to see actual performances.

License

This project is released under the Apache 2.0 license, while the correlation ops is under MIT license.

Acknowledgement

This project is based on mmdetection (commit hash f3a939f), mmcv, MaskTrackRCNN and Pytorch-Correlation-extension. Thanks for their wonderful works.

Citation

If you find our paper and code useful in your research, please consider giving a star ⭐ and citation πŸ“ :

@article{qi2021occluded,
    title={Occluded Video Instance Segmentation},
    author={Jiyang Qi and Yan Gao and Yao Hu and Xinggang Wang and Xiaoyu Liu and Xiang Bai and Serge Belongie and Alan Yuille and Philip Torr and Song Bai},
    journal={arXiv preprint arXiv:2102.01558},
    year={2021},
}
Owner
Q . J . Y
A coder from hust
Q . J . Y
ML models and internal tensors 3D visualizer

The free Zetane Viewer is a tool to help understand and accelerate discovery in machine learning and artificial neural networks. It can be used to ope

Zetane Systems 787 Dec 30, 2022
[TOG 2021] PyTorch implementation for the paper: SofGAN: A Portrait Image Generator with Dynamic Styling.

This repository contains the official PyTorch implementation for the paper: SofGAN: A Portrait Image Generator with Dynamic Styling. We propose a SofGAN image generator to decouple the latent space o

Anpei Chen 694 Dec 23, 2022
Iterative Training: Finding Binary Weight Deep Neural Networks with Layer Binarization

Iterative Training: Finding Binary Weight Deep Neural Networks with Layer Binarization This repository contains the source code for the paper (link wi

Rakuten Group, Inc. 0 Nov 19, 2021
Simulations for Turring patterns on an apically expanding domain. T

Turing patterns on expanding domain Simulations for Turring patterns on an apically expanding domain. The details about the models and numerical imple

Yue Liu 0 Aug 03, 2021
Code for the paper BERT might be Overkill: A Tiny but Effective Biomedical Entity Linker based on Residual Convolutional Neural Networks

Biomedical Entity Linking This repo provides the code for the paper BERT might be Overkill: A Tiny but Effective Biomedical Entity Linker based on Res

Tuan Manh Lai 24 Oct 24, 2022
FastFCN: Rethinking Dilated Convolution in the Backbone for Semantic Segmentation.

FastFCN: Rethinking Dilated Convolution in the Backbone for Semantic Segmentation [Project] [Paper] [arXiv] [Home] Official implementation of FastFCN:

Wu Huikai 815 Dec 29, 2022
Source code for the ACL-IJCNLP 2021 paper entitled "T-DNA: Taming Pre-trained Language Models with N-gram Representations for Low-Resource Domain Adaptation" by Shizhe Diao et al.

T-DNA Source code for the ACL-IJCNLP 2021 paper entitled Taming Pre-trained Language Models with N-gram Representations for Low-Resource Domain Adapta

shizhediao 17 Dec 22, 2022
Reusable constraint types to use with typing.Annotated

annotated-types PEP-593 added typing.Annotated as a way of adding context-specific metadata to existing types, and specifies that Annotated[T, x] shou

125 Dec 26, 2022
CPT: A Pre-Trained Unbalanced Transformer for Both Chinese Language Understanding and Generation

CPT This repository contains code and checkpoints for CPT. CPT: A Pre-Trained Unbalanced Transformer for Both Chinese Language Understanding and Gener

fastNLP 341 Dec 29, 2022
Monitora la qualitΓ  della ricezione dei segnali radio nelle province siciliane.

FMap-server Monitora la qualitΓ  della ricezione dei segnali radio nelle province siciliane. Conversion data Frequency - StationName maps are stored in

Triglie 5 May 24, 2021
A curated list of awesome Deep Learning tutorials, projects and communities.

Awesome Deep Learning Table of Contents Books Courses Videos and Lectures Papers Tutorials Researchers Websites Datasets Conferences Frameworks Tools

Christos 20k Jan 05, 2023
This repository contains demos I made with the Transformers library by HuggingFace.

Transformers-Tutorials Hi there! This repository contains demos I made with the Transformers library by πŸ€— HuggingFace. Currently, all of them are imp

3.5k Jan 01, 2023
Prototypical Pseudo Label Denoising and Target Structure Learning for Domain Adaptive Semantic Segmentation (CVPR 2021)

Prototypical Pseudo Label Denoising and Target Structure Learning for Domain Adaptive Semantic Segmentation (CVPR 2021, official Pytorch implementatio

Microsoft 247 Dec 25, 2022
A tool for calculating distortion parameters in coordination complexes.

OctaDist Octahedral distortion calculator: A tool for calculating distortion parameters in coordination complexes. https://octadist.github.io/ Registe

OctaDist 12 Oct 04, 2022
Source code for the GPT-2 story generation models in the EMNLP 2020 paper "STORIUM: A Dataset and Evaluation Platform for Human-in-the-Loop Story Generation"

Storium GPT-2 Models This is the official repository for the GPT-2 models described in the EMNLP 2020 paper [STORIUM: A Dataset and Evaluation Platfor

Nader Akoury 27 Dec 20, 2022
EasyMocap is an open-source toolbox for markerless human motion capture from RGB videos.

EasyMocap is an open-source toolbox for markerless human motion capture from RGB videos. In this project, we provide the basic code for fitt

ZJU3DV 2.2k Jan 05, 2023
Mind the Trade-off: Debiasing NLU Models without Degrading the In-distribution Performance

Models for natural language understanding (NLU) tasks often rely on the idiosyncratic biases of the dataset, which make them brittle against test cases outside the training distribution.

Ubiquitous Knowledge Processing Lab 22 Jan 02, 2023
Plug-n-Play Reinforcement Learning in Python with OpenAI Gym and JAX

coax is built on top of JAX, but it doesn't have an explicit dependence on the jax python package. The reason is that your version of jaxlib will depend on your CUDA version.

128 Dec 27, 2022
Mosaic of Object-centric Images as Scene-centric Images (MosaicOS) for long-tailed object detection and instance segmentation.

MosaicOS Mosaic of Object-centric Images as Scene-centric Images (MosaicOS) for long-tailed object detection and instance segmentation. Introduction M

Cheng Zhang 27 Oct 12, 2022
State-of-the-art language models can match human performance on many tasks

Status: Archive (code is provided as-is, no updates expected) Grade School Math [Blog Post] [Paper] State-of-the-art language models can match human p

OpenAI 259 Jan 08, 2023