Self-Regulated Learning for Egocentric Video Activity Anticipation

Related tags

Deep LearningSRL
Overview

Self-Regulated Learning for Egocentric Video Activity Anticipation

Introduction

This is a Pytorch implementation of the model described in our paper:

Z. Qi, S. Wang, C. Su, L. Su, Q. Huang, and Q. Tian. Self-Regulated Learning for Egocentric Video Activity Anticipation. TPAMI 2021.

Dependencies

  • Pytorch >= 1.0.1
  • Cuda 9.0.176
  • Cudnn 7.4.2
  • Python 3.6.8

Data

EPIC-Kitchens dataset

For the raw data of the EPIC-Kitchens dataset, please refer to https://github.com/epic-kitchens/download-scripts to download.

For the three modality features (rgb, flow, obj), please refer to https://github.com/fpv-iplab/rulstm to download. After downloading, put them in the folder './data'.

EGTEA Gaze+ dataset

For the raw data of the EGTEA Gaze+ dataset, please refer to http://cbs.ic.gatech.edu/fpv/ to download.

For the extracted features, please refer to https://github.com/fpv-iplab/rulstm to download. After downloading, put them in the folder './data'.

50 Salads dataset

For the raw data of the 50 Salads dataset, please refer to http://cvip.computing.dundee.ac.uk/datasets/foodpreparation/50salads/ to download.

For the extracted features, please refer to https://github.com/colincsl/TemporalConvolutionalNetworks to download. After downloading, put them in the folder './data'.

Breakfast dataset

For the raw data of the Breakfast dataset, please refer to https://serre-lab.clps.brown.edu/resource/breakfast-actions-dataset/ to download.

For the extraced I3D features, please download from Baidu passward: 'wub3' or Google Drive. After downloading, put them in the folder './data'.

Train for Epic-Kitchen dataset

For rgb feature, python main.py --gpu_ids 0 --batch_size 128 --wd 1e-5 --lr 0.1 --reinforce_verb_weight 0.01 --reinforce_noun_weight 0.01 --revision_weight 0.8 --mode train --modality rgb --hidden 1024 --feat_in 1024

Silimar commonds can be used for flow or obj features.

Validation for Epic-Kitchen dataset

Please download the pre-trained model weigths from Baidu passward: 'wub3' or Google Drive, and put them in the folder './results/EPIC/base_srl/pre_trained/'.

For rgb feature, python main.py --gpu_ids 0 --batch_size 128 --mode validate --modality rgb --hidden 1024 --feat_in 1024 --resume_timestamp pre_trained

For flow feature, python main.py --gpu_ids 0 --batch_size 128 --mode validate --modality flow --hidden 1024 --feat_in 1024 --resume_timestamp pre_trained

For obj feature, python main.py --gpu_ids 0 --batch_size 128 --mode validate --modality obj --hidden 352 --feat_in 352 --resume_timestamp pre_trained

For three modality features, python main.py --gpu_ids 0 --batch_size 128 --mode validate --modality fusion --resume_timestamp pre_trained

Citation

Please cite our paper if you use this code in your own work:

@article{qi2021self,
  title={Self-Regulated Learning for Egocentric Video Activity Anticipation},
  author={Qi, Zhaobo and Wang, Shuhui and Su, Chi and Su, Li and Huang, Qingming and Tian, Qi},
  journal={IEEE Transactions on Pattern Analysis \& Machine Intelligence},
  number={01},
  pages={1--1},
  year={2021},
  publisher={IEEE Computer Society}
}

Concat

If you have any problem about our code, feel free to contact

Owner
qzhb
Video Understanding
qzhb
Analysis code and Latex source of the manuscript describing the conditional permutation test of confounding bias in predictive modelling.

Git repositoty of the manuscript entitled Statistical quantification of confounding bias in predictive modelling by Tamas Spisak The manuscript descri

PNI - Predictive Neuroimaging Lab, University Hospital Essen, Germany 0 Nov 22, 2021
Files for a tutorial to train SegNet for road scenes using the CamVid dataset

SegNet and Bayesian SegNet Tutorial This repository contains all the files for you to complete the 'Getting Started with SegNet' and the 'Bayesian Seg

Alex Kendall 800 Dec 31, 2022
Official Pytorch implementation of paper "Reverse Engineering of Generative Models: Inferring Model Hyperparameters from Generated Images"

Reverse_Engineering_GMs Official Pytorch implementation of paper "Reverse Engineering of Generative Models: Inferring Model Hyperparameters from Gener

100 Dec 18, 2022
QAT(quantize aware training) for classification with MQBench

MQBench Quantization Aware Training with PyTorch I am using MQBench(Model Quantization Benchmark)(http://mqbench.tech/) to quantize the model for depl

Ling Zhang 29 Nov 18, 2022
Prompt Tuning with Rules

PTR Code and datasets for our paper "PTR: Prompt Tuning with Rules for Text Classification" If you use the code, please cite the following paper: @art

THUNLP 118 Dec 30, 2022
Bi-level feature alignment for versatile image translation and manipulation (Under submission of TPAMI)

Bi-level feature alignment for versatile image translation and manipulation (Under submission of TPAMI) Preparation Clone the Synchronized-BatchNorm-P

Fangneng Zhan 12 Aug 10, 2022
Classify bird species based on their songs using SIamese Networks and 1D dilated convolutions.

The goal is to classify different birds species based on their songs/calls. Spectrograms have been extracted from the audio samples and used as features for classification.

Aditya Dutt 9 Dec 27, 2022
Open-source Monocular Python HawkEye for Tennis

Tennis Tracking 🎾 Objectives Track the ball Detect court lines Detect the players To track the ball we used TrackNet - deep learning network for trac

ArtLabs 188 Jan 08, 2023
A scikit-learn compatible neural network library that wraps PyTorch

A scikit-learn compatible neural network library that wraps PyTorch. Resources Documentation Source Code Examples To see more elaborate examples, look

4.9k Jan 03, 2023
Label-Free Model Evaluation with Semi-Structured Dataset Representations

Label-Free Model Evaluation with Semi-Structured Dataset Representations Prerequisites This code uses the following libraries Python 3.7 NumPy PyTorch

8 Oct 06, 2022
HyperDict - Self linked dictionary in Python

Hyper Dictionary Advanced python dictionary(hash-table), which can link it-self

8 Feb 06, 2022
This repository contains project created during the Data Challenge module at London School of Hygiene & Tropical Medicine

LSHTM_RCS This repository contains project created during the Data Challenge module at London School of Hygiene & Tropical Medicine (LSHTM) in collabo

Lukas Kopecky 3 Jan 30, 2022
KGDet: Keypoint-Guided Fashion Detection (AAAI 2021)

KGDet: Keypoint-Guided Fashion Detection (AAAI 2021) This is an official implementation of the AAAI-2021 paper "KGDet: Keypoint-Guided Fashion Detecti

Qian Shenhan 35 Dec 29, 2022
LSTC: Boosting Atomic Action Detection with Long-Short-Term Context

LSTC: Boosting Atomic Action Detection with Long-Short-Term Context This Repository contains the code on AVA of our ACM MM 2021 paper: LSTC: Boosting

Tencent YouTu Research 9 Oct 11, 2022
Cerberus Transformer: Joint Semantic, Affordance and Attribute Parsing

Cerberus Transformer: Joint Semantic, Affordance and Attribute Parsing Paper Introduction Multi-task indoor scene understanding is widely considered a

62 Dec 05, 2022
A framework for annotating 3D meshes using the predictions of a 2D semantic segmentation model.

Semantic Meshes A framework for annotating 3D meshes using the predictions of a 2D semantic segmentation model. Paper If you find this framework usefu

Florian 40 Dec 09, 2022
Speeding-Up Back-Propagation in DNN: Approximate Outer Product with Memory

Approximate Outer Product Gradient Descent with Memory Code for the numerical experiment of the paper Speeding-Up Back-Propagation in DNN: Approximate

2 Mar 02, 2022
Imaginaire - NVIDIA's Deep Imagination Team's PyTorch Library

Imaginaire Docs | License | Installation | Model Zoo Imaginaire is a pytorch library that contains optimized implementation of several image and video

NVIDIA Research Projects 3.6k Dec 29, 2022
🚗 INGI Dakar 2K21 - Be the first one on the finish line ! 🚗

🚗 INGI Dakar 2K21 - Be the first one on the finish line ! 🚗 This year's first semester Club Info challenge will put you at the head of a car racing

ClubINFO INGI (UCLouvain) 6 Dec 10, 2021
Meta-Learning Sparse Implicit Neural Representations (NeurIPS 2021)

Meta-SparseINR Official PyTorch implementation of "Meta-learning Sparse Implicit Neural Representations" (NeurIPS 2021) by Jaeho Lee*, Jihoon Tack*, N

Jaeho Lee 41 Nov 10, 2022