Using pretrained language models for biomedical knowledge graph completion.

Overview

LMs for biomedical KG completion

This repository contains code to run the experiments described in:

Scientific Language Models for Biomedical Knowledge Base Completion: An Empirical Study (arXiv link)
Rahul Nadkarni, David Wadden, Iz Beltagy, Noah A. Smith, Hannaneh Hajishirzi, Tom Hope

Data

The edge splits we used for our experiments can be downloaded using the following links:

Link File size
RepoDB, transductive split 11 MB
RepoDB, inductive split 11 MB
Hetionet, transductive split 49 MB
Hetionet, inductive split 49 MB
MSI, transductive split 813 MB
MSI, inductive split 813 MB

Each of these filees should be placed in the subgraph directory before running any of the experiment scripts. Please see the README.md file in the subgraph directory for more information on the edge split files. If you would like to recreate the edge splits yourself or construct new edge splits, use the scripts titled script/create_*_dataset.py.

Environment

The environment.yml file contains all of the necessary packages to use this code. We recommend using Anaconda/Miniconda to set up an environment, which you can do with the command

conda-env create -f environment.yml

Entity names and descriptions

The files that contain entity names and descriptions for all of the datasets can be found in data/processed directory. If you would like to recreate these files yourself, you will need to use the scripts for each dataset found in data/script.

Pre-tokenization

The main training script for the LMs src/lm/run.py can take in pre-tokenized entity names and descriptions as input, and several of the training scripts in script/training are set up to do so. If you would like to pre-tokenize text before fine-tuning, follow the instructions in script/pretokenize.py. You can also pass in one of the .tsv files found in data/processed for the argument --info_filename instead of a file with pre-tokenized text.

Training

All of the scripts for training models can be found in the src directory. The script for training all KGE models is src/kge/run.py, while the script for training LMs is src/lm/run.py. Our code for training KGE models is heavily based on this code from the Open Graph Benchmark Github repository. Examples of how to use each of these scripts, including training with Slurm, can be found in the script/training directory. This directory includes all of the scripts we used to run the experiments for the results in the paper.

Owner
Rahul Nadkarni
Computer Science Ph.D. student
Rahul Nadkarni
Source code for the Paper: CombOptNet: Fit the Right NP-Hard Problem by Learning Integer Programming Constraints}

CombOptNet: Fit the Right NP-Hard Problem by Learning Integer Programming Constraints Installation Run pipenv install (at your own risk with --skip-lo

Autonomous Learning Group 65 Dec 27, 2022
Pytorch implementation of paper "Efficient Nearest Neighbor Language Models" (EMNLP 2021)

Pytorch implementation of paper "Efficient Nearest Neighbor Language Models" (EMNLP 2021)

Junxian He 57 Jan 01, 2023
joint detection and semantic segmentation, based on ultralytics/yolov5,

Multi YOLO V5——Detection and Semantic Segmentation Overeview This is my undergraduate graduation project which based on ultralytics YOLO V5 tag v5.0.

477 Jan 06, 2023
nnFormer: Interleaved Transformer for Volumetric Segmentation

nnFormer: Interleaved Transformer for Volumetric Segmentation Code for paper "nnFormer: Interleaved Transformer for Volumetric Segmentation ". Please

jsguo 610 Dec 28, 2022
PyTorch framework for Deep Learning research and development.

Accelerated DL & RL PyTorch framework for Deep Learning research and development. It was developed with a focus on reproducibility, fast experimentati

Catalyst-Team 29 Jul 13, 2022
3rd Place Solution for ICCV 2021 Workshop SSLAD Track 3A - Continual Learning Classification Challenge

Online Continual Learning via Multiple Deep Metric Learning and Uncertainty-guided Episodic Memory Replay 3rd Place Solution for ICCV 2021 Workshop SS

Rifki Kurniawan 6 Nov 10, 2022
Vector.ai assignment

fabio-tests-nisargatman Low Level Approach: ###Tables: continents: id*, name, population, area, createdAt, updatedAt countries: id*, name, population,

Ravi Pullagurla 1 Nov 09, 2021
A web-based application for quick, scalable, and automated hyperparameter tuning and stacked ensembling in Python.

Xcessiv Xcessiv is a tool to help you create the biggest, craziest, and most excessive stacked ensembles you can think of. Stacked ensembles are simpl

Reiichiro Nakano 1.3k Nov 17, 2022
Human head pose estimation using Keras over TensorFlow.

RealHePoNet: a robust single-stage ConvNet for head pose estimation in the wild.

Rafael Berral Soler 71 Jan 05, 2023
Face recognition project by matching the features extracted using SIFT.

MV_FaceDetectionWithSIFT Face recognition project by matching the features extracted using SIFT. By : Aria Radmehr Professor : Ali Amiri Dependencies

Aria Radmehr 4 May 31, 2022
Enabling Lightweight Fine-tuning for Pre-trained Language Model Compression based on Matrix Product Operators

Enabling Lightweight Fine-tuning for Pre-trained Language Model Compression based on Matrix Product Operators This is our Pytorch implementation for t

RUCAIBox 12 Jul 22, 2022
Comp445 project - Data Communications & Computer Networks

COMP-445 Data Communications & Computer Networks Change Python version in Conda

Peng Zhao 2 Oct 03, 2022
The official implementation of paper "Finding the Task-Optimal Low-Bit Sub-Distribution in Deep Neural Networks" (IJCV under review).

DGMS This is the code of the paper "Finding the Task-Optimal Low-Bit Sub-Distribution in Deep Neural Networks". Installation Our code works with Pytho

Runpei Dong 3 Aug 28, 2022
Gesture-Volume-Control - This Python program can adjust the system's volume by using hand gestures

Gesture-Volume-Control This Python program can adjust the system's volume by usi

VatsalAryanBhatanagar 1 Dec 30, 2021
Deep Residual Networks with 1K Layers

Deep Residual Networks with 1K Layers By Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun. Microsoft Research Asia (MSRA). Table of Contents Introduc

Kaiming He 856 Jan 06, 2023
Deep learning for spiking neural networks

A deep learning library for spiking neural networks. Norse aims to exploit the advantages of bio-inspired neural components, which are sparse and even

Electronic Vision(s) Group — BrainScaleS Neuromorphic Hardware 59 Nov 28, 2022
official implemntation for "Contrastive Learning with Stronger Augmentations"

CLSA CLSA is a self-supervised learning methods which focused on the pattern learning from strong augmentations. Copyright (C) 2020 Xiao Wang, Guo-Jun

Lab for MAchine Perception and LEarning (MAPLE) 47 Nov 29, 2022
In-place Parallel Super Scalar Samplesort (IPS⁴o)

In-place Parallel Super Scalar Samplesort (IPS⁴o) This is the implementation of the algorithm IPS⁴o presented in the paper Engineering In-place (Share

82 Dec 22, 2022
Spectralformer: Rethinking hyperspectral image classification with transformers

The code in this toolbox implements the "Spectralformer: Rethinking hyperspectral image classification with transformers". More specifically, it is detailed as follow.

Danfeng Hong 104 Jan 04, 2023
Radar-to-Lidar: Heterogeneous Place Recognition via Joint Learning

radar-to-lidar-place-recognition This page is the coder of a pre-print, implemented by PyTorch. If you have some questions on this project, please fee

Huan Yin 37 Oct 09, 2022