Reinforcement learning framework and algorithms implemented in PyTorch.

Related tags

Deep Learningrlkit
Overview

RLkit

Reinforcement learning framework and algorithms implemented in PyTorch.

Implemented algorithms:

To get started, checkout the example scripts, linked above.

What's New

Version 0.2

04/25/2019

  • Use new multiworld code that requires explicit environment registration.
  • Make installation easier by adding setup.py and using default conf.py.

04/16/2019

  • Log how many train steps were called
  • Log env_info and agent_info.

04/05/2019-04/15/2019

  • Add rendering
  • Fix SAC bug to account for future entropy (#41, #43)
  • Add online algorithm mode (#42)

04/05/2019

The initial release for 0.2 has the following major changes:

  • Remove Serializable class and use default pickle scheme.
  • Remove PyTorchModule class and use native torch.nn.Module directly.
  • Switch to batch-style training rather than online training.
    • Makes code more amenable to parallelization.
    • Implementing the online-version is straightforward.
  • Refactor training code to be its own object, rather than being integrated inside of RLAlgorithm.
  • Refactor sampling code to be its own object, rather than being integrated inside of RLAlgorithm.
  • Implement Skew-Fit: State-Covering Self-Supervised Reinforcement Learning, a method for performing goal-directed exploration to maximize the entropy of visited states.
  • Update soft actor-critic to more closely match TensorFlow implementation:
    • Rename TwinSAC to just SAC.
    • Only have Q networks.
    • Remove unnecessary policy regualization terms.
    • Use numerically stable Jacobian computation.

Overall, the refactors are intended to make the code more modular and readable than the previous versions.

Version 0.1

12/04/2018

  • Add RIG implementation

12/03/2018

  • Add HER implementation
  • Add doodad support

10/16/2018

  • Upgraded to PyTorch v0.4
  • Added Twin Soft Actor Critic Implementation
  • Various small refactor (e.g. logger, evaluate code)

Installation

  1. Install and use the included Ananconda environment
$ conda env create -f environment/[linux-cpu|linux-gpu|mac]-env.yml
$ source activate rlkit
(rlkit) $ python examples/ddpg.py

Choose the appropriate .yml file for your system. These Anaconda environments use MuJoCo 1.5 and gym 0.10.5. You'll need to get your own MuJoCo key if you want to use MuJoCo.

  1. Add this repo directory to your PYTHONPATH environment variable or simply run:
pip install -e .
  1. (Optional) Copy conf.py to conf_private.py and edit to override defaults:
cp rlkit/launchers/conf.py rlkit/launchers/conf_private.py
  1. (Optional) If you plan on running the Skew-Fit experiments or the HER example with the Sawyer environment, then you need to install multiworld.

DISCLAIMER: the mac environment has only been tested without a GPU.

For an even more portable solution, try using the docker image provided in environment/docker. The Anaconda env should be enough, but this docker image addresses some of the rendering issues that may arise when using MuJoCo 1.5 and GPUs. The docker image supports GPU, but it should work without a GPU. To use a GPU with the image, you need to have nvidia-docker installed.

Using a GPU

You can use a GPU by calling

import rlkit.torch.pytorch_util as ptu
ptu.set_gpu_mode(True)

before launching the scripts.

If you are using doodad (see below), simply use the use_gpu flag:

run_experiment(..., use_gpu=True)

Visualizing a policy and seeing results

During training, the results will be saved to a file called under

LOCAL_LOG_DIR/
   
    /
    

    
   
  • LOCAL_LOG_DIR is the directory set by rlkit.launchers.config.LOCAL_LOG_DIR. Default name is 'output'.
  • is given either to setup_logger.
  • is auto-generated and based off of exp_prefix.
  • inside this folder, you should see a file called params.pkl. To visualize a policy, run
(rlkit) $ python scripts/run_policy.py LOCAL_LOG_DIR/
   
    /
    
     /params.pkl

    
   

or

(rlkit) $ python scripts/run_goal_conditioned_policy.py LOCAL_LOG_DIR/
   
    /
    
     /params.pkl

    
   

depending on whether or not the policy is goal-conditioned.

If you have rllab installed, you can also visualize the results using rllab's viskit, described at the bottom of this page

tl;dr run

python rllab/viskit/frontend.py LOCAL_LOG_DIR/<exp_prefix>/

to visualize all experiments with a prefix of exp_prefix. To only visualize a single run, you can do

python rllab/viskit/frontend.py LOCAL_LOG_DIR/<exp_prefix>/<folder name>

Alternatively, if you don't want to clone all of rllab, a repository containing only viskit can be found here. You can similarly visualize results with.

python viskit/viskit/frontend.py LOCAL_LOG_DIR/<exp_prefix>/

This viskit repo also has a few extra nice features, like plotting multiple Y-axis values at once, figure-splitting on multiple keys, and being able to filter hyperparametrs out.

Visualizing a goal-conditioned policy

To visualize a goal-conditioned policy, run

(rlkit) $ python scripts/run_goal_conditioned_policy.py
LOCAL_LOG_DIR/
   
    /
    
     /params.pkl

    
   

Launching jobs with doodad

The run_experiment function makes it easy to run Python code on Amazon Web Services (AWS) or Google Cloud Platform (GCP) by using this fork of doodad.

It's as easy as:

from rlkit.launchers.launcher_util import run_experiment

def function_to_run(variant):
    learning_rate = variant['learning_rate']
    ...

run_experiment(
    function_to_run,
    exp_prefix="my-experiment-name",
    mode='ec2',  # or 'gcp'
    variant={'learning_rate': 1e-3},
)

You will need to set up parameters in config.py (see step one of Installation). This requires some knowledge of AWS and/or GCP, which is beyond the scope of this README. To learn more, more about doodad, go to the repository, which is based on this original repository.

Requests for pull-requests

  • Implement policy-gradient algorithms.
  • Implement model-based algorithms.

Legacy Code (v0.1.2)

For Temporal Difference Models (TDMs) and the original implementation of Reinforcement Learning with Imagined Goals (RIG), run git checkout tags/v0.1.2.

References

The algorithms are based on the following papers

Offline Meta-Reinforcement Learning with Online Self-Supervision Vitchyr H. Pong, Ashvin Nair, Laura Smith, Catherine Huang, Sergey Levine. arXiv preprint, 2021.

Skew-Fit: State-Covering Self-Supervised Reinforcement Learning. Vitchyr H. Pong*, Murtaza Dalal*, Steven Lin*, Ashvin Nair, Shikhar Bahl, Sergey Levine. ICML, 2020.

Visual Reinforcement Learning with Imagined Goals. Ashvin Nair*, Vitchyr Pong*, Murtaza Dalal, Shikhar Bahl, Steven Lin, Sergey Levine. NeurIPS 2018.

Temporal Difference Models: Model-Free Deep RL for Model-Based Control. Vitchyr Pong*, Shixiang Gu*, Murtaza Dalal, Sergey Levine. ICLR 2018.

Hindsight Experience Replay. Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob McGrew, Josh Tobin, Pieter Abbeel, Wojciech Zaremba. NeurIPS 2017.

Deep Reinforcement Learning with Double Q-learning. Hado van Hasselt, Arthur Guez, David Silver. AAAI 2016.

Human-level control through deep reinforcement learning. Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra, Shane Legg, Demis Hassabis. Nature 2015.

Soft Actor-Critic Algorithms and Applications. Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, Sergey Levine. arXiv preprint, 2018.

Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor. Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. ICML, 2018.

Addressing Function Approximation Error in Actor-Critic Methods Scott Fujimoto, Herke van Hoof, David Meger. ICML, 2018.

Credits

This repository was initially developed primarily by Vitchyr Pong, until July 2021, at which point it was transferred to the RAIL Berkeley organization and is primarily maintained by Ashvin Nair. Other major collaborators and contributions:

A lot of the coding infrastructure is based on rllab. The serialization and logger code are basically a carbon copy of the rllab versions.

The Dockerfile is based on the OpenAI mujoco-py Dockerfile.

The SMAC code builds off of the PEARL code, which built off of an older RLKit version.

Owner
Robotic AI & Learning Lab Berkeley
Robotic AI & Learning Lab Berkeley
A Python library for working with arbitrary-dimension hypercomplex numbers following the Cayley-Dickson construction of algebras.

Hypercomplex A Python library for working with quaternions, octonions, sedenions, and beyond following the Cayley-Dickson construction of hypercomplex

7 Nov 04, 2022
Invasive Plant Species Identification

Invasive_Plant_Species_Identification Used LiDAR Odometry and Mapping (LOAM) to create a 3D point cloud map which can be used to identify invasive pla

2 May 12, 2022
Code artifacts for the submission "Mind the Gap! A Study on the Transferability of Virtual vs Physical-world Testing of Autonomous Driving Systems"

Code Artifacts Code artifacts for the submission "Mind the Gap! A Study on the Transferability of Virtual vs Physical-world Testing of Autonomous Driv

Andrea Stocco 2 Aug 24, 2022
Build a medical knowledge graph based on Unified Language Medical System (UMLS)

UMLS-Graph Build a medical knowledge graph based on Unified Language Medical System (UMLS) Requisite Install MySQL Server 5.6 and import UMLS data int

Donghua Chen 6 Dec 25, 2022
Code to accompany the paper "Finding Bipartite Components in Hypergraphs", which is published in NeurIPS'21.

Finding Bipartite Components in Hypergraphs This repository contains code to accompany the paper "Finding Bipartite Components in Hypergraphs", publis

Peter Macgregor 5 May 06, 2022
Informal Persian Universal Dependency Treebank

Informal Persian Universal Dependency Treebank (iPerUDT) Informal Persian Universal Dependency Treebank, consisting of 3000 sentences and 54,904 token

Roya Kabiri 0 Jan 05, 2022
Subdivision-based Mesh Convolutional Networks

Subdivision-based Mesh Convolutional Networks The official implementation of SubdivNet in our paper, Subdivion-based Mesh Convolutional Networks Requi

Zheng-Ning Liu 181 Dec 28, 2022
Designing a Minimal Retrieve-and-Read System for Open-Domain Question Answering (NAACL 2021)

Designing a Minimal Retrieve-and-Read System for Open-Domain Question Answering Abstract In open-domain question answering (QA), retrieve-and-read mec

Clova AI Research 34 Apr 13, 2022
Unified Instance and Knowledge Alignment Pretraining for Aspect-based Sentiment Analysis

Unified Instance and Knowledge Alignment Pretraining for Aspect-based Sentiment Analysis Requirements python 3.7 pytorch-gpu 1.7 numpy 1.19.4 pytorch_

12 Oct 29, 2022
Multiple-Object Tracking with Transformer

TransTrack: Multiple-Object Tracking with Transformer Introduction TransTrack: Multiple-Object Tracking with Transformer Models Training data Training

Peize Sun 537 Jan 04, 2023
Preprossing-loan-data-with-NumPy - In this project, I have cleaned and pre-processed the loan data that belongs to an affiliate bank based in the United States.

Preprossing-loan-data-with-NumPy In this project, I have cleaned and pre-processed the loan data that belongs to an affiliate bank based in the United

Dhawal Chitnavis 2 Jan 03, 2022
Pytorch implementation of our paper LIMUSE: LIGHTWEIGHT MULTI-MODAL SPEAKER EXTRACTION.

LiMuSE Overview Pytorch implementation of our paper LIMUSE: LIGHTWEIGHT MULTI-MODAL SPEAKER EXTRACTION. LiMuSE explores group communication on a multi

Auditory Model and Cognitive Computing Lab 17 Oct 26, 2022
Codebase for Image Classification Research, written in PyTorch.

pycls pycls is an image classification codebase, written in PyTorch. It was originally developed for the On Network Design Spaces for Visual Recogniti

Facebook Research 2k Jan 01, 2023
CRISCE: Automatically Generating Critical Driving Scenarios From Car Accident Sketches

CRISCE: Automatically Generating Critical Driving Scenarios From Car Accident Sketches This document describes how to install and use CRISCE (CRItical

Chair of Software Engineering II, Uni Passau 2 Feb 09, 2022
LF-YOLO (Lighter and Faster YOLO) is used to detect defect of X-ray weld image.

This project is based on ultralytics/yolov3. LF-YOLO (Lighter and Faster YOLO) is used to detect defect of X-ray weld image. The related paper is avai

26 Dec 13, 2022
[ICCV'2021] Image Inpainting via Conditional Texture and Structure Dual Generation

[ICCV'2021] Image Inpainting via Conditional Texture and Structure Dual Generation

Xiefan Guo 122 Dec 11, 2022
Sparse-dense operators implementation for Paddle

Sparse-dense operators implementation for Paddle This module implements coo, csc and csr matrix formats and their inter-ops with dense matrices. Feel

北海若 3 Dec 17, 2022
A Python script that creates subtitles of a given length from text paragraphs that can be easily imported into any Video Editing software such as FinalCut Pro for further adjustments.

Text to Subtitles - Python This python file creates subtitles of a given length from text paragraphs that can be easily imported into any Video Editin

Dmytro North 9 Dec 24, 2022
[ACM MM2021] MGH: Metadata Guided Hypergraph Modeling for Unsupervised Person Re-identification

Introduction This project is developed based on FastReID, which is an ongoing ReID project. Projects BUC In projects/BUC, we implement AAAI 2019 paper

WuYiming 7 Apr 13, 2022