4th place solution to datafactory challenge by Intermarché.

Overview

Solution to Datafactory challenge by Intermarché.

4th place solution to datafactory challenge by Intermarché. The objective of the challenge is to predict the sales made by intermarche in the first quarter of 2019. We have the data of the past year (2018) to train our model to fit the sales.

Data 💿

We have the record of sales for a set of pairs (store, item) and for each day of 2018 (if there was at least one sale). The data are structured as:

date store item quantity
2018-01-01 1 12 1
2018-01-01 1 17 2
2018-01-01 1 22 3

We have additional tables available such as:

  • Product characteristics.
  • Store characteristics.
  • Product prices by store and by quarter.

Solution 🤖

The main difficulty of the challenge is to find the days for which a store has recorded no sales for a given product. Indeed, Intermarché does not provide records for which the target variable (quantity) is equal to 0. I found that adding up to 5 zeros after a sale for a given pair (store / item) maximized the performance of my model and limited the overfitting of my aggregates.

Features:

  • Aggregates by item / store (mean + std)
  • Aggregates on prices. (mean)
  • Aggregates on the characteristics of the stores. (mean)
  • Aggregates on product characteristics. (mean)
  • Rolling medians over the last 9 weeks.
  • Features on dates. (weekend / holidays / day of the week)

I used LightGBM and performed a 3-fold cross-validation with bagging to make my prediction. I transformed the target variable to train my model using quantity = log(1 + quantity). Poisson loss helps a bit. I didn't look for the hyperparameters of the model.

Finally I set all predictions of February and March as the predictions of the second and third week of January.

Also I set to 0 the set of predictions associated to triplets (store / item / day of the week) for which we have not enough records in the training set.

Run ♻️

To reproduce my results, you must download the data in the folder data/raw.

python scripts/prepare_raw_data.py
python scripts/features/aggs_items.py
python scripts/features/aggs_prices.py
python scripts/features/aggs_stores.py
python scripts/features/aggs.py 
python scripts/features/lags.py
python scripts/features/cal.py 
python scripts/make_train_test.py
python scripts/learn.py
python scripts/polish_sub.py

License

This project is free and open-source software licensed under the MIT license.

Owner
Raphael Sourty
PhD Student @ IRIT and Renault
Raphael Sourty
Unofficial PyTorch implementation of TokenLearner by Google AI

tokenlearner-pytorch Unofficial PyTorch implementation of TokenLearner by Ryoo et al. from Google AI (abs, pdf) Installation You can install TokenLear

Rishabh Anand 46 Dec 20, 2022
Really awesome semantic segmentation

really-awesome-semantic-segmentation A list of all papers on Semantic Segmentation and the datasets they use. This site is maintained by Holger Caesar

Holger Caesar 400 Nov 28, 2022
[AAAI 2021] MVFNet: Multi-View Fusion Network for Efficient Video Recognition

MVFNet: Multi-View Fusion Network for Efficient Video Recognition (AAAI 2021) Overview We release the code of the MVFNet (Multi-View Fusion Network).

Wenhao Wu 114 Nov 27, 2022
VGGFace2-HQ - A high resolution face dataset for face editing purpose

The first open source high resolution dataset for face swapping!!! A high resolution version of VGGFace2 for academic face editing purpose

Naiyuan Liu 232 Dec 29, 2022
TensorFlow implementation of "Variational Inference with Normalizing Flows"

[TensorFlow 2] Variational Inference with Normalizing Flows TensorFlow implementation of "Variational Inference with Normalizing Flows" [1] Concept Co

YeongHyeon Park 7 Jun 08, 2022
PyTorch implementation of "Contrast to Divide: self-supervised pre-training for learning with noisy labels"

Contrast to Divide: self-supervised pre-training for learning with noisy labels This is an official implementation of "Contrast to Divide: self-superv

55 Nov 23, 2022
render sprites into your desktop environment as shaped windows using GTK

spritegtk render static or animated sprites into your desktop environment as dynamic shaped windows using GTK requires pycairo and PYGobject: pip inst

hermit 20 Oct 27, 2022
Spherical CNNs

Spherical CNNs Equivariant CNNs for the sphere and SO(3) implemented in PyTorch Overview This library contains a PyTorch implementation of the rotatio

Jonas Köhler 893 Dec 28, 2022
rliable is an open-source Python library for reliable evaluation, even with a handful of runs, on reinforcement learning and machine learnings benchmarks.

Open-source library for reliable evaluation on reinforcement learning and machine learning benchmarks. See NeurIPS 2021 oral for details.

Google Research 529 Jan 01, 2023
Multiband spectro-radiometric satellite image analysis with K-means cluster algorithm

Multi-band Spectro Radiomertric Image Analysis with K-means Cluster Algorithm Overview Multi-band Spectro Radiomertric images are images comprising of

Chibueze Henry 6 Mar 16, 2022
Scientific Computation Methods in C and Python (Open for Hacktoberfest 2021)

Sci - cpy README is a stub. Do expand it. Objective This repository is meant to be a ready reference for scientific computation methods. Do ⭐ it if yo

Sandip Dutta 7 Oct 12, 2022
RLMeta is a light-weight flexible framework for Distributed Reinforcement Learning Research.

RLMeta rlmeta - a flexible lightweight research framework for Distributed Reinforcement Learning based on PyTorch and moolib Installation To build fro

Meta Research 281 Dec 22, 2022
A Tensorflow implementation of CapsNet based on Geoffrey Hinton's paper Dynamic Routing Between Capsules

CapsNet-Tensorflow A Tensorflow implementation of CapsNet based on Geoffrey Hinton's paper Dynamic Routing Between Capsules Notes: The current version

Huadong Liao 3.8k Dec 29, 2022
Occlusion robust 3D face reconstruction model in CFR-GAN (WACV 2022)

Occlusion Robust 3D face Reconstruction Yeong-Joon Ju, Gun-Hee Lee, Jung-Ho Hong, and Seong-Whan Lee Code for Occlusion Robust 3D Face Reconstruction

Yeongjoon 31 Dec 19, 2022
Additional code for Stable-baselines3 to load and upload models from the Hub.

Hugging Face x Stable-baselines3 A library to load and upload Stable-baselines3 models from the Hub. Installation With pip Examples [Todo: add colab t

Hugging Face 34 Dec 10, 2022
The repo for the paper "I3CL: Intra- and Inter-Instance Collaborative Learning for Arbitrary-shaped Scene Text Detection".

I3CL: Intra- and Inter-Instance Collaborative Learning for Arbitrary-shaped Scene Text Detection Updates | Introduction | Results | Usage | Citation |

33 Jan 05, 2023
Recognize Handwritten Digits using Deep Learning on the browser itself.

MNIST on the Web An attempt to predict MNIST handwritten digits from my PyTorch model from the browser (client-side) and not from the server, with the

Harjyot Bagga 7 May 28, 2022
3rd Place Solution for ICCV 2021 Workshop SSLAD Track 3A - Continual Learning Classification Challenge

Online Continual Learning via Multiple Deep Metric Learning and Uncertainty-guided Episodic Memory Replay 3rd Place Solution for ICCV 2021 Workshop SS

Rifki Kurniawan 6 Nov 10, 2022
Code to go with the paper "Decentralized Bayesian Learning with Metropolis-Adjusted Hamiltonian Monte Carlo"

dblmahmc Code to go with the paper "Decentralized Bayesian Learning with Metropolis-Adjusted Hamiltonian Monte Carlo" Requirements: https://github.com

1 Dec 17, 2021
Practical Blind Denoising via Swin-Conv-UNet and Data Synthesis

Practical Blind Denoising via Swin-Conv-UNet and Data Synthesis [Paper] [Online Demo] The following results are obtained by our SCUNet with purely syn

Kai Zhang 312 Jan 07, 2023