RodoSol-ALPR Dataset

Overview

RodoSol-ALPR Dataset

This dataset, called RodoSol-ALPR dataset, contains 20,000 images captured by static cameras located at pay tolls owned by the Rodovia do Sol (RodoSol) concessionaire, which operates 67.5 kilometers of a highway (ES-060) in the Brazilian state of Espírito Santo. It has been introduced in our VISAPP paper (To appear).

There are images of different types of vehicles (e.g., cars, motorcycles, buses and trucks), captured during the day and night, from distinct lanes, on clear and rainy days, and the distance from the vehicle to the camera varies slightly. All images have a resolution of 1,280 × 720 pixels.

An important feature of the proposed dataset is that it has images of two different LP layouts: Brazilian and Mercosur (to maintain consistency with previous works, we refer to “Brazilian” as the standard used in Brazil before the adoption of the Mercosur standard). All Brazilian LPs consist of three letters followed by four digits, while the initial pattern adopted in Brazil for Mercosur LPs consists of 3 letters, 1 digit, 1 letter and 2 digits, in that order. In both layouts, car LPs have the seven characters arranged in one row, whereas motorcycle LPs have three characters in one row and four characters in another. Even though these LP layouts are very similar in shape and size, there are considerable differences in their colors and also in the font of the characters.

Here are some examples from the dataset:

Note: we show a zoomed-in version of the vehicle’s LP in the bottom right corner of the images in the last column for better viewing of the LP layouts.

The 20,000 images are divided as follows: 5,000 images of cars with Brazilian LPs; 5,000 images of motorcycles with Brazilian LPs; 5,000 images of cars with Mercosur LPs; and 5,000 images of motorcycles with Mercosur LPs. For the sake of simplicity of definitions, here “car” refers to any vehicle with four wheels or more (e.g., passenger cars, vans, buses, trucks, among others), while “motorcycle” refers to both motorcycles and motorized tricycles.

We randomly split the RodoSol-ALPR dataset as follows: 8,000 images for training, 8,000 images for testing and 4,000 images for validation, following the split protocol (i.e., 40%/40%/20%) adopted in the SSIG-SegPlate and UFPR-ALPR datasets. We preserved the percentage of samples for each vehicle type and LP layout, for example, there are 2,000 images of cars with Brazilian LPs in each of the training and test sets, and 1,000 images in the validation one. For reproducibility purposes, the subsets generated are explicitly available along with the proposed dataset.

Every image has the following information available in a text file: the vehicle’s type (car or motorcycle), the LP’s layout (Brazilian or Mercosul), its text (e.g., ABC-1234), and the position (x, y) of each of its four corners. We labeled the corners instead of just the LP bounding box to enable the training of methods that explore LP rectification, as well as the application of a wider range of data augmentation techniques.

Regarding privacy concerns related to our dataset, we remark that in Brazil the LPs are related to the respective vehicles, i.e., no public information is available about the vehicle drivers/owners. Moreover, all human faces (e.g., drivers or RodoSol’s employees) were manually redacted (i.e., blurred) in each image.

How to obtain the Dataset

The RodoSol-ALPR dataset is released for academic research only and is free to researchers from educational or research institutes for non-commercial purposes.

To be able to download the dataset, please read carefully this license agreement, fill it out and send it back to the first author ([email protected]). Your e-mail must be sent from a valid university account (.edu, .ac or similar).

In general, a download link will take 1-3 business days to issue. Failure to follow the instructions may result in no response.

Citation

If you use the RodoSol-ALPR dataset in your research, please cite our paper:

  • R. Laroca, E. V. Cardoso, D. R. Lucio, V. Estevam, and D. Menotti, “On the Cross-dataset Generalization in License Plate Recognition” in International Conference on Computer Vision Theory and Applications (VISAPP), Feb 2022, pp. 1–13. [arXiv]
@inproceedings{laroca2022cross,
  title = {On the Cross-dataset Generalization in License Plate Recognition},
  author = {R. {Laroca} and E. V. {Cardoso} and D. R. {Lucio} and V. {Estevam} and D. {Menotti}},
  year = {2022},
  month = {Feb},
  booktitle = {International Conference on Computer Vision Theory and Applications (VISAPP)},
  volume = {},
  number = {},
  pages = {1-13},
  doi = {},
  issn={2184-4321},
}

Contact

Please contact Rayson Laroca ([email protected]) with questions or comments.

Owner
Rayson Laroca
Rayson Laroca is a PhD student at the Federal University of Paraná (UFPR), where he also received his master's degree in Computer Science.
Rayson Laroca
A PyTorch-Based Framework for Deep Learning in Computer Vision

TorchCV: A PyTorch-Based Framework for Deep Learning in Computer Vision @misc{you2019torchcv, author = {Ansheng You and Xiangtai Li and Zhen Zhu a

Donny You 2.2k Jan 09, 2023
This is our ARTS test set, an enriched test set to probe Aspect Robustness of ABSA.

This is the repository for our 2020 paper "Tasty Burgers, Soggy Fries: Probing Aspect Robustness in Aspect-Based Sentiment Analysis". Data We provide

35 Nov 16, 2022
DPC: Unsupervised Deep Point Correspondence via Cross and Self Construction (3DV 2021)

DPC: Unsupervised Deep Point Correspondence via Cross and Self Construction (3DV 2021) This repo is the implementation of DPC. Tested environment Pyth

Dvir Ginzburg 30 Nov 30, 2022
This is the official pytorch implementation of Student Helping Teacher: Teacher Evolution via Self-Knowledge Distillation(TESKD)

Student Helping Teacher: Teacher Evolution via Self-Knowledge Distillation (TESKD) By Zheng Li[1,4], Xiang Li[2], Lingfeng Yang[2,4], Jian Yang[2], Zh

Zheng Li 9 Sep 26, 2022
Dynamic Slimmable Network (CVPR 2021, Oral)

Dynamic Slimmable Network (DS-Net) This repository contains PyTorch code of our paper: Dynamic Slimmable Network (CVPR 2021 Oral). Architecture of DS-

Changlin Li 197 Dec 09, 2022
CLASP - Contrastive Language-Aminoacid Sequence Pretraining

CLASP - Contrastive Language-Aminoacid Sequence Pretraining Repository for creating models pretrained on language and aminoacid sequences similar to C

Michael Pieler 133 Dec 29, 2022
EmoTag helps you train emotion detection model for Chinese audios

emoTag emoTag helps you train emotion detection model for Chinese audios. Environment pip install -r requirement.txt Data We used Emotional Speech Dat

_zza 4 Sep 07, 2022
Code for Active Learning at The ImageNet Scale.

Code for Active Learning at The ImageNet Scale. This repository implements many popular active learning algorithms and allows training with torch's DDP.

Zeyad Emam 47 Dec 12, 2022
Code for the USENIX 2017 paper: kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels

kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels Blazing fast x86-64 VM kernel fuzzing framework with performant VM reloads for Linux, MacOS an

Chair for Sys­tems Se­cu­ri­ty 541 Nov 27, 2022
SPLADE: Sparse Lexical and Expansion Model for First Stage Ranking

SPLADE 🍴 + 🥄 = 🔎 This repository contains the weights for four models as well as the code for running inference for our two papers: [v1]: SPLADE: S

NAVER 170 Dec 28, 2022
Let's create a tool to convert Thailand budget from PDF to CSV.

thailand-budget-pdf2csv Let's create a tool to convert Thailand Government Budgeting from PDF to CSV! รวมพลัง Dev แปลงงบ จาก PDF สู่ Machine-readable

Kao.Geek 88 Dec 19, 2022
Official Code Release for Container : Context Aggregation Network

Container: Context Aggregation Network Official Code Release for Container : Context Aggregation Network Comparion between CNN, MLP-Mixer and Transfor

peng gao 42 Nov 17, 2021
TEA: A Sequential Recommendation Framework via Temporally Evolving Aggregations

TEA: A Sequential Recommendation Framework via Temporally Evolving Aggregations Requirements python 3.6 torch 1.9 numpy 1.19 Quick Start The experimen

DMIRLAB 4 Oct 16, 2022
Official implement of Paper:A deeply supervised image fusion network for change detection in high resolution bi-temporal remote sening images

A deeply supervised image fusion network for change detection in high resolution bi-temporal remote sensing images 深度监督影像融合网络DSIFN用于高分辨率双时相遥感影像变化检测 Of

Chenxiao Zhang 135 Dec 19, 2022
PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place Recognition, CVPR 2018

PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place Recognition PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place

Mikaela Uy 294 Dec 12, 2022
Simple Tensorflow implementation of "Adaptive Convolutions for Structure-Aware Style Transfer" (CVPR 2021)

AdaConv — Simple TensorFlow Implementation [Paper] : Adaptive Convolutions for Structure-Aware Style Transfer (CVPR 2021) Note This repository does no

Junho Kim 26 Nov 18, 2022
Using pytorch to implement unet network for liver image segmentation.

Using pytorch to implement unet network for liver image segmentation.

zxq 1 Dec 17, 2021
Official Repsoitory for "Mish: A Self Regularized Non-Monotonic Neural Activation Function" [BMVC 2020]

Mish: Self Regularized Non-Monotonic Activation Function BMVC 2020 (Official Paper) Notes: (Click to expand) A considerably faster version based on CU

Xa9aX ツ 1.2k Dec 29, 2022
A collection of educational notebooks on multi-view geometry and computer vision.

Multiview notebooks This is a collection of educational notebooks on multi-view geometry and computer vision. Subjects covered in these notebooks incl

Max 65 Dec 09, 2022
Image Captioning using CNN ,LSTM and Attention

Image Captioning using CNN ,LSTM and Attention This is a deeplearning model which tries to summarize an image into a text . Installation Install this

ASUTOSH GHANTO 1 Dec 16, 2021