Py-faster-rcnn - Faster R-CNN (Python implementation)

Overview

py-faster-rcnn has been deprecated. Please see Detectron, which includes an implementation of Mask R-CNN.

Disclaimer

The official Faster R-CNN code (written in MATLAB) is available here. If your goal is to reproduce the results in our NIPS 2015 paper, please use the official code.

This repository contains a Python reimplementation of the MATLAB code. This Python implementation is built on a fork of Fast R-CNN. There are slight differences between the two implementations. In particular, this Python port

  • is ~10% slower at test-time, because some operations execute on the CPU in Python layers (e.g., 220ms / image vs. 200ms / image for VGG16)
  • gives similar, but not exactly the same, mAP as the MATLAB version
  • is not compatible with models trained using the MATLAB code due to the minor implementation differences
  • includes approximate joint training that is 1.5x faster than alternating optimization (for VGG16) -- see these slides for more information

Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

By Shaoqing Ren, Kaiming He, Ross Girshick, Jian Sun (Microsoft Research)

This Python implementation contains contributions from Sean Bell (Cornell) written during an MSR internship.

Please see the official README.md for more details.

Faster R-CNN was initially described in an arXiv tech report and was subsequently published in NIPS 2015.

License

Faster R-CNN is released under the MIT License (refer to the LICENSE file for details).

Citing Faster R-CNN

If you find Faster R-CNN useful in your research, please consider citing:

@inproceedings{renNIPS15fasterrcnn,
    Author = {Shaoqing Ren and Kaiming He and Ross Girshick and Jian Sun},
    Title = {Faster {R-CNN}: Towards Real-Time Object Detection
             with Region Proposal Networks},
    Booktitle = {Advances in Neural Information Processing Systems ({NIPS})},
    Year = {2015}
}

Contents

  1. Requirements: software
  2. Requirements: hardware
  3. Basic installation
  4. Demo
  5. Beyond the demo: training and testing
  6. Usage

Requirements: software

NOTE If you are having issues compiling and you are using a recent version of CUDA/cuDNN, please consult this issue for a workaround

  1. Requirements for Caffe and pycaffe (see: Caffe installation instructions)

Note: Caffe must be built with support for Python layers!

# In your Makefile.config, make sure to have this line uncommented
WITH_PYTHON_LAYER := 1
# Unrelatedly, it's also recommended that you use CUDNN
USE_CUDNN := 1

You can download my Makefile.config for reference. 2. Python packages you might not have: cython, python-opencv, easydict 3. [Optional] MATLAB is required for official PASCAL VOC evaluation only. The code now includes unofficial Python evaluation code.

Requirements: hardware

  1. For training smaller networks (ZF, VGG_CNN_M_1024) a good GPU (e.g., Titan, K20, K40, ...) with at least 3G of memory suffices
  2. For training Fast R-CNN with VGG16, you'll need a K40 (~11G of memory)
  3. For training the end-to-end version of Faster R-CNN with VGG16, 3G of GPU memory is sufficient (using CUDNN)

Installation (sufficient for the demo)

  1. Clone the Faster R-CNN repository
# Make sure to clone with --recursive
git clone --recursive https://github.com/rbgirshick/py-faster-rcnn.git
  1. We'll call the directory that you cloned Faster R-CNN into FRCN_ROOT

    Ignore notes 1 and 2 if you followed step 1 above.

    Note 1: If you didn't clone Faster R-CNN with the --recursive flag, then you'll need to manually clone the caffe-fast-rcnn submodule:

    git submodule update --init --recursive

    Note 2: The caffe-fast-rcnn submodule needs to be on the faster-rcnn branch (or equivalent detached state). This will happen automatically if you followed step 1 instructions.

  2. Build the Cython modules

    cd $FRCN_ROOT/lib
    make
  3. Build Caffe and pycaffe

    cd $FRCN_ROOT/caffe-fast-rcnn
    # Now follow the Caffe installation instructions here:
    #   http://caffe.berkeleyvision.org/installation.html
    
    # If you're experienced with Caffe and have all of the requirements installed
    # and your Makefile.config in place, then simply do:
    make -j8 && make pycaffe
  4. Download pre-computed Faster R-CNN detectors

    cd $FRCN_ROOT
    ./data/scripts/fetch_faster_rcnn_models.sh

    This will populate the $FRCN_ROOT/data folder with faster_rcnn_models. See data/README.md for details. These models were trained on VOC 2007 trainval.

Demo

After successfully completing basic installation, you'll be ready to run the demo.

To run the demo

cd $FRCN_ROOT
./tools/demo.py

The demo performs detection using a VGG16 network trained for detection on PASCAL VOC 2007.

Beyond the demo: installation for training and testing models

  1. Download the training, validation, test data and VOCdevkit

    wget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtrainval_06-Nov-2007.tar
    wget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtest_06-Nov-2007.tar
    wget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCdevkit_08-Jun-2007.tar
  2. Extract all of these tars into one directory named VOCdevkit

    tar xvf VOCtrainval_06-Nov-2007.tar
    tar xvf VOCtest_06-Nov-2007.tar
    tar xvf VOCdevkit_08-Jun-2007.tar
  3. It should have this basic structure

    $VOCdevkit/                           # development kit
    $VOCdevkit/VOCcode/                   # VOC utility code
    $VOCdevkit/VOC2007                    # image sets, annotations, etc.
    # ... and several other directories ...
  4. Create symlinks for the PASCAL VOC dataset

    cd $FRCN_ROOT/data
    ln -s $VOCdevkit VOCdevkit2007

    Using symlinks is a good idea because you will likely want to share the same PASCAL dataset installation between multiple projects.

  5. [Optional] follow similar steps to get PASCAL VOC 2010 and 2012

  6. [Optional] If you want to use COCO, please see some notes under data/README.md

  7. Follow the next sections to download pre-trained ImageNet models

Download pre-trained ImageNet models

Pre-trained ImageNet models can be downloaded for the three networks described in the paper: ZF and VGG16.

cd $FRCN_ROOT
./data/scripts/fetch_imagenet_models.sh

VGG16 comes from the Caffe Model Zoo, but is provided here for your convenience. ZF was trained at MSRA.

Usage

To train and test a Faster R-CNN detector using the alternating optimization algorithm from our NIPS 2015 paper, use experiments/scripts/faster_rcnn_alt_opt.sh. Output is written underneath $FRCN_ROOT/output.

cd $FRCN_ROOT
./experiments/scripts/faster_rcnn_alt_opt.sh [GPU_ID] [NET] [--set ...]
# GPU_ID is the GPU you want to train on
# NET in {ZF, VGG_CNN_M_1024, VGG16} is the network arch to use
# --set ... allows you to specify fast_rcnn.config options, e.g.
#   --set EXP_DIR seed_rng1701 RNG_SEED 1701

("alt opt" refers to the alternating optimization training algorithm described in the NIPS paper.)

To train and test a Faster R-CNN detector using the approximate joint training method, use experiments/scripts/faster_rcnn_end2end.sh. Output is written underneath $FRCN_ROOT/output.

cd $FRCN_ROOT
./experiments/scripts/faster_rcnn_end2end.sh [GPU_ID] [NET] [--set ...]
# GPU_ID is the GPU you want to train on
# NET in {ZF, VGG_CNN_M_1024, VGG16} is the network arch to use
# --set ... allows you to specify fast_rcnn.config options, e.g.
#   --set EXP_DIR seed_rng1701 RNG_SEED 1701

This method trains the RPN module jointly with the Fast R-CNN network, rather than alternating between training the two. It results in faster (~ 1.5x speedup) training times and similar detection accuracy. See these slides for more details.

Artifacts generated by the scripts in tools are written in this directory.

Trained Fast R-CNN networks are saved under:

output/
   
    /
    
     /

    
   

Test outputs are saved under:

output/
   
    /
    
     /
     
      /

     
    
   
Owner
Ross Girshick
Ross Girshick
Official repository of the paper "GPR1200: A Benchmark for General-PurposeContent-Based Image Retrieval"

GPR1200 Dataset GPR1200: A Benchmark for General-Purpose Content-Based Image Retrieval (ArXiv) Konstantin Schall, Kai Uwe Barthel, Nico Hezel, Klaus J

Visual Computing Group 16 Nov 21, 2022
Official Implementation of DE-DETR and DELA-DETR in "Towards Data-Efficient Detection Transformers"

DE-DETRs By Wen Wang, Jing Zhang, Yang Cao, Yongliang Shen, and Dacheng Tao This repository is an official implementation of DE-DETR and DELA-DETR in

Wen Wang 61 Dec 12, 2022
Flask101 - FullStack Web Development with Python & JS - From TAQWA

Task: Create a CLI Calculator Step 0: Creating Virtual Environment $ python -m

Hossain Foysal 1 May 31, 2022
Tool for live presentations using manim

manim-presentation Tool for live presentations using manim Install pip install manim-presentation opencv-python Usage Use the class Slide as your sce

Federico Galatolo 146 Jan 06, 2023
Automated image registration. Registrationimation was too much of a mouthful.

alignimation Automated image registration. Registrationimation was too much of a mouthful. This repo contains the code used for my blog post Alignimat

Ethan Rosenthal 9 Oct 13, 2022
Adversarial Adaptation with Distillation for BERT Unsupervised Domain Adaptation

Knowledge Distillation for BERT Unsupervised Domain Adaptation Official PyTorch implementation | Paper Abstract A pre-trained language model, BERT, ha

Minho Ryu 29 Nov 30, 2022
PyTorch Implementation for AAAI'21 "Do Response Selection Models Really Know What's Next? Utterance Manipulation Strategies for Multi-turn Response Selection"

UMS for Multi-turn Response Selection Implements the model described in the following paper Do Response Selection Models Really Know What's Next? Utte

Taesun Whang 47 Nov 22, 2022
Official PyTorch implementation of the preprint paper "Stylized Neural Painting", accepted to CVPR 2021.

Official PyTorch implementation of the preprint paper "Stylized Neural Painting", accepted to CVPR 2021.

Zhengxia Zou 1.5k Dec 28, 2022
DPC: Unsupervised Deep Point Correspondence via Cross and Self Construction (3DV 2021)

DPC: Unsupervised Deep Point Correspondence via Cross and Self Construction (3DV 2021) This repo is the implementation of DPC. Tested environment Pyth

Dvir Ginzburg 30 Nov 30, 2022
GAN JAX - A toy project to generate images from GANs with JAX

GAN JAX - A toy project to generate images from GANs with JAX This project aims to bring the power of JAX, a Python framework developped by Google and

Valentin Goldité 14 Nov 29, 2022
Augmented Traffic Control: A tool to simulate network conditions

Augmented Traffic Control Full documentation for the project is available at http://facebook.github.io/augmented-traffic-control/. Overview Augmented

Meta Archive 4.3k Jan 08, 2023
Dynamic Divide-and-Conquer Adversarial Training for Robust Semantic Segmentation (ICCV2021)

Dynamic Divide-and-Conquer Adversarial Training for Robust Semantic Segmentation This is a pytorch project for the paper Dynamic Divide-and-Conquer Ad

DV Lab 29 Nov 21, 2022
A Model for Natural Language Attack on Text Classification and Inference

TextFooler A Model for Natural Language Attack on Text Classification and Inference This is the source code for the paper: Jin, Di, et al. "Is BERT Re

Di Jin 418 Dec 16, 2022
Pytorch implementation of "A simple neural network module for relational reasoning" (Relational Networks)

Pytorch implementation of Relational Networks - A simple neural network module for relational reasoning Implemented & tested on Sort-of-CLEVR task. So

Kim Heecheol 800 Dec 05, 2022
Instance-level Image Retrieval using Reranking Transformers

Instance-level Image Retrieval using Reranking Transformers Fuwen Tan, Jiangbo Yuan, Vicente Ordonez, ICCV 2021. Abstract Instance-level image retriev

UVA Computer Vision 87 Jan 03, 2023
Generate text captions for images from their CLIP embeddings. Includes PyTorch model code and example training script.

clip-text-decoder Generate text captions for images from their CLIP embeddings. Includes PyTorch model code and example training script. Example Predi

Frank Odom 36 Dec 21, 2022
Read Like Humans: Autonomous, Bidirectional and Iterative Language Modeling for Scene Text Recognition

Read Like Humans: Autonomous, Bidirectional and Iterative Language Modeling for Scene Text Recognition The official code of ABINet (CVPR 2021, Oral).

334 Dec 31, 2022
Code for Generating Disentangled Arguments with Prompts: A Simple Event Extraction Framework that Works

GDAP Code for Generating Disentangled Arguments with Prompts: A Simple Event Extraction Framework that Works Environment Python (verified: v3.8) CUDA

45 Oct 29, 2022
Deeprl - Standard DQN and dueling network for simple games

DeepRL This code implements the standard deep Q-learning and dueling network with experience replay (memory buffer) for playing simple games. DQN algo

Yao Zhou 6 Apr 12, 2020
DC540 hacking challenge 0x00005a.

dc540-0x00005a DC540 hacking challenge 0x00005a. PROMOTIONAL VIDEO - WATCH NOW HERE ON YOUTUBE CRITICAL PART 5A VIDEO - WATCH NOW HERE ON YOUTUBE Prio

Kevin Thomas 3 May 09, 2022