Multi-Objective Loss Balancing for Physics-Informed Deep Learning

Overview

Multi-Objective Loss Balancing for Physics-Informed Deep Learning

Code for ReLoBRaLo.

Abstract

Physics Informed Neural Networks (PINN) are algorithms from deeplearning leveraging physical laws by including partial differential equations (PDE)together with a respective set of boundary and initial conditions (BC / IC) aspenalty terms into their loss function. As the PDE, BC and IC loss function parts cansignificantly differ in magnitudes, due to their underlying physical units or stochasticityof initialisation, training of PINNs may suffer from severe convergence and efficiencyproblems, causing PINNs to stay beyond desirable approximation quality. In thiswork, we observe the significant role of correctly weighting the combination of multiplecompetitive loss functions for training PINNs effectively. To that end, we implementand evaluate different methods aiming at balancing the contributions of multipleterms of the PINNs loss function and their gradients. After review of three existingloss scaling approaches (Learning Rate Annealing, GradNorm as well as SoftAdapt),we propose a novel self-adaptive loss balancing of PINNs calledReLoBRaLo(RelativeLoss Balancing with Random Lookback). Finally, the performance of ReLoBRaLo iscompared and verified against these approaches by solving both forward as well asinverse problems on three benchmark PDEs for PINNs: Burgers’ equation, Kirchhoff’splate bending equation and Helmholtz’s equation. Our simulation studies show thatReLoBRaLo training is much faster and achieves higher accuracy than training PINNswith other balancing methods and hence is very effective and increases sustainabilityof PINNs algorithms. The adaptability of ReLoBRaLo illustrates robustness acrossdifferent PDE problem settings. The proposed method can also be employed tothe wider class of penalised optimisation problems, including PDE-constrained andSobolev training apart from the studied PINNs examples.

Launch Training

Example:

python train.py --verbose --layers 2 --nodes 32 --task helmholtz --update_rule relobralo --resample

The available options are the following:

  • --path, default: experiments, type: str, path where to store the results

  • --layers, default: 1, type: int, number of layers

  • --nodes, default: 32, type: int, number of nodes

  • --network, default: fc, type: str, type of network

  • --optimizer, default: adam, type: str, type of optimizer

  • --lr, default: 0.001, type: float, learning rate

  • --patience, default: 3, type: int, how many evaluations without improvement to wait before reducing learning rate

  • --factor, default: .1, type: float, multiplicative factor by which to reduce the learning rate

  • --task, default: helmholtz, type: str, type of task to fit

  • --inverse, action: store_true, solve inverse problem

  • --inverse_var, default: None, type: float, target inverse variable

  • --update_rule, default: manual, type: str, type of balancing

  • --T, default: 1., type: float, temperature parameter for softmax

  • --alpha, default: .999, type: float, rate for exponential decay

  • --rho, default: 1., type: float, rate for exponential decay

  • --aggregate_boundaries, action: store_true, aggregate all boundary terms into one before balancing

  • --epochs, default: 100000, type: int, number of epochs

  • --resample, action: store_true, resample datapoints or keep them fixed

  • --batch_size, default: 1024, type: int, number of sampled points in a batch

  • --verbose, action: store_true, print progress to terminal

Owner
Rafael Bischof
Rafael Bischof
Interpretation of T cell states using reference single-cell atlases

Interpretation of T cell states using reference single-cell atlases ProjecTILs is a computational method to project scRNA-seq data into reference sing

Cancer Systems Immunology Lab 139 Jan 03, 2023
Animate molecular orbital transitions using Psi4 and Blender

Molecular Orbital Transitions (MOT) Animate molecular orbital transitions using Psi4 and Blender Author: Maximilian Paradiz Dominguez, University of A

3 Feb 01, 2022
PyTorch implementation for our paper Learning Character-Agnostic Motion for Motion Retargeting in 2D, SIGGRAPH 2019

Learning Character-Agnostic Motion for Motion Retargeting in 2D We provide PyTorch implementation for our paper Learning Character-Agnostic Motion for

Rundi Wu 367 Dec 22, 2022
Self-describing JSON-RPC services made easy

ReflectRPC Self-describing JSON-RPC services made easy Contents What is ReflectRPC? Installation Features Datatypes Custom Datatypes Returning Errors

Andreas Heck 31 Jul 16, 2022
Scalable Graph Neural Networks for Heterogeneous Graphs

Neighbor Averaging over Relation Subgraphs (NARS) NARS is an algorithm for node classification on heterogeneous graphs, based on scalable neighbor ave

Facebook Research 67 Dec 03, 2022
CoSMA: Convolutional Semi-Regular Mesh Autoencoder. From Paper "Mesh Convolutional Autoencoder for Semi-Regular Meshes of Different Sizes"

Mesh Convolutional Autoencoder for Semi-Regular Meshes of Different Sizes Implementation of CoSMA: Convolutional Semi-Regular Mesh Autoencoder arXiv p

Fraunhofer SCAI 10 Oct 11, 2022
HomoInterpGAN - Homomorphic Latent Space Interpolation for Unpaired Image-to-image Translation

HomoInterpGAN Homomorphic Latent Space Interpolation for Unpaired Image-to-image Translation (CVPR 2019, oral) Installation The implementation is base

Ying-Cong Chen 99 Nov 15, 2022
Code to reproduce experiments in the paper "Explainability Requires Interactivity".

Explainability Requires Interactivity This repository contains the code to train all custom models used in the paper Explainability Requires Interacti

Digital Health & Machine Learning 5 Apr 07, 2022
Meta Language-Specific Layers in Multilingual Language Models

Meta Language-Specific Layers in Multilingual Language Models This repo contains the source codes for our paper On Negative Interference in Multilingu

Zirui Wang 20 Feb 13, 2022
Project dự đoán giá cổ phiếu bằng thuật toán LSTM gồm: code train và code demo

Web predicts stock prices using Long - Short Term Memory algorithm Give me some start please!!! User interface image: Choose: DayBegin, DayEnd, Stock

Vo Thuong Truong Nhon 8 Nov 11, 2022
Deep learning PyTorch library for time series forecasting, classification, and anomaly detection

Deep learning for time series forecasting Flow forecast is an open-source deep learning for time series forecasting framework. It provides all the lat

AIStream 1.2k Jan 04, 2023
Official git for "CTAB-GAN: Effective Table Data Synthesizing"

CTAB-GAN This is the official git paper CTAB-GAN: Effective Table Data Synthesizing. The paper is published on Asian Conference on Machine Learning (A

30 Dec 26, 2022
Annotated notes and summaries of the TensorFlow white paper, along with SVG figures and links to documentation

TensorFlow White Paper Notes Features Notes broken down section by section, as well as subsection by subsection Relevant links to documentation, resou

Sam Abrahams 437 Oct 09, 2022
Code for the ICML 2021 paper: "ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision"

ViLT Code for the paper: "ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision" Install pip install -r requirements.txt pip

Wonjae Kim 922 Jan 01, 2023
DeLag: Detecting Latency Degradation Patterns in Service-based Systems

DeLag: Detecting Latency Degradation Patterns in Service-based Systems Replication package of the work "DeLag: Detecting Latency Degradation Patterns

SEALABQualityGroup @ University of L'Aquila 2 Mar 24, 2022
This repo provides the base code for pytorch-lightning and weight and biases simultaneous integration.

Write your model faster with pytorch-lightning-wadb-code-backbone This repository provides the base code for pytorch-lightning and weight and biases s

9 Mar 29, 2022
LibFewShot: A Comprehensive Library for Few-shot Learning.

LibFewShot Make few-shot learning easy. Supported Methods Meta MAML(ICML'17) ANIL(ICLR'20) R2D2(ICLR'19) Versa(NeurIPS'18) LEO(ICLR'19) MTL(CVPR'19) M

<a href=[email protected]&L"> 603 Jan 05, 2023
DSAC* for Visual Camera Re-Localization (RGB or RGB-D)

DSAC* for Visual Camera Re-Localization (RGB or RGB-D) Introduction Installation Data Structure Supported Datasets 7Scenes 12Scenes Cambridge Landmark

Visual Learning Lab 143 Dec 22, 2022
OptNet: Differentiable Optimization as a Layer in Neural Networks

OptNet: Differentiable Optimization as a Layer in Neural Networks This repository is by Brandon Amos and J. Zico Kolter and contains the PyTorch sourc

CMU Locus Lab 428 Dec 24, 2022
ManiSkill-Learn is a framework for training agents on SAPIEN Open-Source Manipulation Skill Challenge (ManiSkill Challenge), a large-scale learning-from-demonstrations benchmark for object manipulation.

ManiSkill-Learn ManiSkill-Learn is a framework for training agents on SAPIEN Open-Source Manipulation Skill Challenge, a large-scale learning-from-dem

Hao Su's Lab, UCSD 48 Dec 30, 2022