Conservative and Adaptive Penalty for Model-Based Safe Reinforcement Learning

Related tags

Deep LearningCAP
Overview

Conservative and Adaptive Penalty for Model-Based Safe Reinforcement Learning

This is the official repository for Conservative and Adaptive Penalty for Model-Based Safe Reinforcement Learning. We provide the commands to run the PETS and PlaNet experiments included in the paper. This repository is made minimal for ease of experimentation.

Installations

This repository requires Python (3.6), Pytorch (version 1.3 or above) run the following command to create a conda environment (tested using CUDA10.2):

conda env create -f environment.yml

Experiments

To run the PETS experiments on the HalfCheetah environment used in our ablation study, run:

cd cap-pets

CAP

python cap-pets/run_cap_pets.py --algo cem --env HalfCheetah-v3 --cost_lim 152 \
--cost_constrained --penalize_uncertainty --learn_kappa --seed 1

CAP with fixed kappa

python cap-pets/run_cap_pets.py --algo cem --env HalfCheetah-v3 --cost_lim 152 \
--cost_constrained --penalize_uncertainty --kappa 1.0 --seed 1

CCEM

python cap-pets/run_cap_pets.py --algo cem --env HalfCheetah-v3 --cost_lim 152 \
--cost_constrained --seed 1

CEM

python cap-pets/run_cap_pets.py --algo cem --env HalfCheetah-v3 --cost_lim 152 \
--seed 1

The commands for the PlaNet experiment on the CarRacing environment are:

CAP

python cap-planet/run_cap_planet.py --env CarRacingSkiddingConstrained-v0 \
--cost-limit 0 --binary-cost \
--cost-constrained --penalize-uncertainty \
--learn-kappa --penalty-kappa 0.1 \
--id CarRacing-cap --seed 1

CAP with fixed kappa

python cap-planet/run_cap_planet.py --env CarRacingSkiddingConstrained-v0 \
--cost-limit 0 --binary-cost \
--cost-constrained --penalize-uncertainty \
--penalty-kappa 1.0 \
--id CarRacing-kappa1 --seed 1

CCEM

python cap-planet/run_cap_planet.py --env CarRacingSkiddingConstrained-v0 \
--cost-limit 0 --binary-cost \
--cost-constrained \
--id CarRacing-ccem --seed 1

CEM

python cap-planet/run_cap_planet.py --env CarRacingSkiddingConstrained-v0 \
--cost-limit 0 --binary-cost \
--id CarRacing-cem --seed 1

Contact

If you have any questions regarding the code or paper, feel free to contact [email protected] or open an issue on this repository.

Acknowledgement

This repository contains code adapted from the following repositories: PETS and PlaNet. We thank the authors and contributors for open-sourcing their code.

Owner
Undergraduate student at University of Melbourne, interested in Machine Learning
3D Multi-Person Pose Estimation by Integrating Top-Down and Bottom-Up Networks

3D Multi-Person Pose Estimation by Integrating Top-Down and Bottom-Up Networks Introduction This repository contains the code and models for the follo

124 Jan 06, 2023
Implementation of Transformer in Transformer, pixel level attention paired with patch level attention for image classification, in Pytorch

Transformer in Transformer Implementation of Transformer in Transformer, pixel level attention paired with patch level attention for image c

Phil Wang 272 Dec 23, 2022
moving object detection for satellite videos.

DSFNet: Dynamic and Static Fusion Network for Moving Object Detection in Satellite Videos Algorithm Introduction DSFNet: Dynamic and Static Fusion Net

xiaochao 39 Dec 16, 2022
Code for CVPR 2021 oral paper "Exploring Data-Efficient 3D Scene Understanding with Contrastive Scene Contexts"

Exploring Data-Efficient 3D Scene Understanding with Contrastive Scene Contexts The rapid progress in 3D scene understanding has come with growing dem

Facebook Research 182 Dec 30, 2022
Facial detection, landmark tracking and expression transfer library for Windows, Linux and Mac

Welcome to the CSIRO Face Analysis SDK. Documentation for the SDK can be found in doc/documentation.html. All code in this SDK is provided according t

Luiz Carlos Vieira 7 Jul 16, 2020
Neural style transfer in PyTorch.

style-transfer-pytorch An implementation of neural style transfer (A Neural Algorithm of Artistic Style) in PyTorch, supporting CPUs and Nvidia GPUs.

Katherine Crowson 395 Jan 06, 2023
Code to reproduce the experiments in the paper "Transformer Based Multi-Source Domain Adaptation" (EMNLP 2020)

Transformer Based Multi-Source Domain Adaptation Dustin Wright and Isabelle Augenstein To appear in EMNLP 2020. Read the preprint: https://arxiv.org/a

CopeNLU 36 Dec 05, 2022
PED: DETR for Crowd Pedestrian Detection

PED: DETR for Crowd Pedestrian Detection Code for PED: DETR For (Crowd) Pedestrian Detection Paper PED: DETR for Crowd Pedestrian Detection Installati

36 Sep 13, 2022
This is the code of "Multi-view Contrastive Graph Clustering" in NeurlPS 2021.

MCGC Description This is the code of "Multi-view Contrastive Graph Clustering" in NeurlPS 2021. Datasets Results ACM DBLP IMDB Amazon photos Amazon co

31 Nov 14, 2022
Models Supported: AlbUNet [18, 34, 50, 101, 152] (1D and 2D versions for Single and Multiclass Segmentation, Feature Extraction with supports for Deep Supervision and Guided Attention)

AlbUNet-1D-2D-Tensorflow-Keras This repository contains 1D and 2D Signal Segmentation Model Builder for AlbUNet and several of its variants developed

Sakib Mahmud 1 Nov 15, 2021
Laplacian Score-regularized Concrete Autoencoders

Laplacian Score-regularized Concrete Autoencoders Requirements: torch = 1.9 scikit-learn = 0.24 omegaconf = 2.0.6 scipy = 1.6.0 matplotlib How to

JS 6 Dec 07, 2022
Seg-Torch for Image Segmentation with Torch

Seg-Torch for Image Segmentation with Torch This work was sparked by my personal research on simple segmentation methods based on deep learning. It is

Eren Gölge 37 Dec 12, 2022
Automatic number plate recognition using tech: Yolo, OCR, Scene text detection, scene text recognation, flask, torch

Automatic Number Plate Recognition Automatic Number Plate Recognition (ANPR) is the process of reading the characters on the plate with various optica

Meftun AKARSU 52 Dec 22, 2022
Super Resolution for images using deep learning.

Neural Enhance Example #1 — Old Station: view comparison in 24-bit HD, original photo CC-BY-SA @siv-athens. As seen on TV! What if you could increase

Alex J. Champandard 11.7k Dec 29, 2022
Not All Points Are Equal: Learning Highly Efficient Point-based Detectors for 3D LiDAR Point Clouds (CVPR 2022, Oral)

Not All Points Are Equal: Learning Highly Efficient Point-based Detectors for 3D LiDAR Point Clouds (CVPR 2022, Oral) This is the official implementat

Yifan Zhang 259 Dec 25, 2022
Unofficial PyTorch implementation of MobileViT based on paper "MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer".

MobileViT RegNet Unofficial PyTorch implementation of MobileViT based on paper MOBILEVIT: LIGHT-WEIGHT, GENERAL-PURPOSE, AND MOBILE-FRIENDLY VISION TR

Hong-Jia Chen 91 Dec 02, 2022
[NeurIPS 2021] A weak-shot object detection approach by transferring semantic similarity and mask prior.

[NeurIPS 2021] A weak-shot object detection approach by transferring semantic similarity and mask prior.

BCMI 49 Jul 27, 2022
Official implementation of the ICCV 2021 paper "Conditional DETR for Fast Training Convergence".

The DETR approach applies the transformer encoder and decoder architecture to object detection and achieves promising performance. In this paper, we handle the critical issue, slow training convergen

281 Dec 30, 2022
The code of NeurIPS 2021 paper "Scalable Rule-Based Representation Learning for Interpretable Classification".

Rule-based Representation Learner This is a PyTorch implementation of Rule-based Representation Learner (RRL) as described in NeurIPS 2021 paper: Scal

Zhuo Wang 53 Dec 17, 2022
EFENet: Reference-based Video Super-Resolution with Enhanced Flow Estimation

EFENet EFENet: Reference-based Video Super-Resolution with Enhanced Flow Estimation Code is a bit messy now. I woud clean up soon. For training the EF

Yaping Zhao 19 Nov 05, 2022