When Does Pretraining Help? Assessing Self-Supervised Learning for Law and the CaseHOLD Dataset of 53,000+ Legal Holdings

Related tags

Deep Learningcasehold
Overview

When Does Pretraining Help? Assessing Self-Supervised Learning for Law and the CaseHOLD Dataset of 53,000+ Legal Holdings

This is the repository for the paper, When Does Pretraining Help? Assessing Self-Supervised Learning for Law and the CaseHOLD Dataset of 53,000+ Legal Holdings (Zheng and Guha et al., 2021), accepted to ICAIL 2021.

It includes models, datasets, and code for computing pretrain loss and finetuning Legal-BERT, Custom Legal-BERT, and BERT (double) models on legal benchmark tasks: Overruling, Terms of Service, CaseHOLD.

Download Models & Datasets

The legal benchmark task datasets and Legal-BERT, Custom Legal-BERT, and BERT (double) model files can be downloaded from the casehold Google Drive folder. For more information, see the Description of the folder.

The models can also be accessed directly from the Hugging Face model hub. To load a model from the model hub in a script, pass its Hugging Face model repository name to the model_name_or_path script argument. See demo.ipynb for more details.

Hugging Face Model Repositories

Download the legal benchmark task datasets and the models (optional, scripts can directly load models from Hugging Face model repositories) from the casehold Google Drive folder and unzip them under the top-level directory like:

reglab/casehold
├── data
│ ├── casehold.csv
│ └── overruling.csv
├── models
│ ├── bert-double
│ │ ├── config.json
│ │ ├── pytorch_model.bin
│ │ ├── special_tokens_map.json
│ │ ├── tf_model.h5
│ │ ├── tokenizer_config.json
│ │ └── vocab.txt
│ └── custom-legalbert
│ │ ├── config.json
│ │ ├── pytorch_model.bin
│ │ ├── special_tokens_map.json
│ │ ├── tf_model.h5
│ │ ├── tokenizer_config.json
│ │ └── vocab.txt
│ └── legalbert
│ │ ├── config.json
│ │ ├── pytorch_model.bin
│ │ ├── special_tokens_map.json
│ │ ├── tf_model.h5
│ │ ├── tokenizer_config.json
│ │ └── vocab.txt

Requirements

This code was tested with Python 3.7 and Pytorch 1.8.1.

Install required packages and dependencies:

pip install -r requirements.txt

Install transformers from source (required for tokenizers dependencies):

pip install git+https://github.com/huggingface/transformers

Model Descriptions

Legal-BERT

Training Data

The pretraining corpus was constructed by ingesting the entire Harvard Law case corpus from 1965 to the present. The size of this corpus (37GB) is substantial, representing 3,446,187 legal decisions across all federal and state courts, and is larger than the size of the BookCorpus/Wikipedia corpus originally used to train BERT (15GB). We randomly sample 10% of decisions from this corpus as a holdout set, which we use to create the CaseHOLD dataset. The remaining 90% is used for pretraining.

Training Objective

This model is initialized with the base BERT model (uncased, 110M parameters), bert-base-uncased, and trained for an additional 1M steps on the MLM and NSP objective, with tokenization and sentence segmentation adapted for legal text (cf. the paper).

Custom Legal-BERT

Training Data

Same pretraining corpus as Legal-BERT

Training Objective

This model is pretrained from scratch for 2M steps on the MLM and NSP objective, with tokenization and sentence segmentation adapted for legal text (cf. the paper).

The model also uses a custom domain-specific legal vocabulary. The vocabulary set is constructed using SentencePiece on a subsample (approx. 13M) of sentences from our pretraining corpus, with the number of tokens fixed to 32,000.

BERT (double)

Training Data

BERT (double) is pretrained using the same English Wikipedia corpus that the base BERT model (uncased, 110M parameters), bert-base-uncased, was pretrained on. For more information on the pretraining corpus, refer to the BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding paper.

Training Objective

This model is initialized with the base BERT model (uncased, 110M parameters), bert-base-uncased, and trained for an additional 1M steps on the MLM and NSP objective.

This facilitates a direct comparison to our BERT-based models for the legal domain, Legal-BERT and Custom Legal-BERT, which are also pretrained for 2M total steps.

Legal Benchmark Task Descriptions

Overruling

We release the Overruling dataset in conjunction with Casetext, the creators of the dataset.

The Overruling dataset corresponds to the task of determining when a sentence is overruling a prior decision. This is a binary classification task, where positive examples are overruling sentences and negative examples are non-overruling sentences extracted from legal opinions. In law, an overruling sentence is a statement that nullifies a previous case decision as a precedent, by a constitutionally valid statute or a decision by the same or higher ranking court which establishes a different rule on the point of law involved. The Overruling dataset consists of 2,400 examples.

Terms of Service

We provide a link to the Terms of Service dataset, created and made publicly accessible by the authors of CLAUDETTE: an automated detector of potentially unfair clauses in online terms of service (Lippi et al., 2019).

The Terms of Service dataset corresponds to the task of identifying whether contractual terms are potentially unfair. This is a binary classification task, where positive examples are potentially unfair contractual terms (clauses) from the terms of service in consumer contracts. Article 3 of the Directive 93/13 on Unfair Terms in Consumer Contracts defines an unfair contractual term as follows. A contractual term is unfair if: (1) it has not been individually negotiated; and (2) contrary to the requirement of good faith, it causes a significant imbalance in the parties rights and obligations, to the detriment of the consumer. The Terms of Service dataset consists of 9,414 examples.

CaseHOLD

We release the CaseHOLD dataset, created by the authors of our paper, When Does Pretraining Help? Assessing Self-Supervised Learning for Law and the CaseHOLD Dataset of 53,000+ Legal Holdings (Zheng and Guha et al., 2021).

The CaseHOLD dataset (Case Holdings On Legal Decisions) provides 53,000+ multiple choice questions with prompts from a judicial decision and multiple potential holdings, one of which is correct, that could be cited. Holdings are central to the common law system. They represent the the governing legal rule when the law is applied to a particular set of facts. It is what is precedential and what litigants can rely on in subsequent cases. The CaseHOLD task derived from the dataset is a multiple choice question answering task, with five candidate holdings (one correct, four incorrect) for each citing context.

For more details on the construction of these legal benchmark task datasets, please see our paper.

Hyperparameters for Downstream Tasks

We split each task dataset into a train and test set with an 80/20 split for hyperparameter tuning. For the baseline model, we performed a random search with batch size set to 16 and 32 over learning rates in the bounded domain 1e-5 to 1e-2, training for a maximum of 20 epochs. To set the model hyperparameters for fine-tuning our BERT and Legal-BERT models, we refer to the suggested hyperparameter ranges for batch size, learning rate and number of epochs in Devlin et al. as a reference point and perform two rounds of grid search for each task. We performed the coarse round of grid search with batch size set to 16 for Overruling and Terms of Service and batch size set to 128 for Citation, over learning rates: 1e-6, 1e-5, 1e-4, training for a maximum of 4 epochs. From the coarse round, we discovered that the optimal learning rates for the legal benchmark tasks were smaller than the lower end of the range suggested in Devlin et al., so we performed a finer round of grid search over a range that included smaller learning rates. For Overruling and Terms of Service, we performed the finer round of grid search over batch sizes (16, 32) and learning rates (5e-6, 1e-5, 2e-5, 3e-5, 5e-5), training for a maximum of 4 epochs. For CaseHOLD, we performed the finer round of grid search with batch size set to 128 over learning rates (1e-6, 3e-6, 5e-6, 7e-6, 9e-6), training for a maximum of 4 epochs. We report the hyperparameters used for evaluation in the table below.

Hyperparameter Table

Results

The results from the paper for the baseline BiLSTM, base BERT model (uncased, 110M parameters), BERT (double), Legal-BERT, and Custom Legal-BERT, finetuned on the legal benchmark tasks, are displayed below.

Demo

demo.ipynb provides examples of how to run the scripts to compute pretrain loss and finetune Legal-BERT/Custom Legal-BERT models on the legal benchmark tasks. These examples should be able to run on a GPU that has 16GB of RAM using the hyperparameters specified in the examples.

See demo.ipynb for details on calculating domain specificity (DS) scores for tasks or task examples by taking the difference in pretrain loss on BERT (double) and Legal-BERT. DS score may be readily extended to estimate domain specificity of tasks in other domains using BERT (double) and existing pretrained models (e.g., SciBERT).

Citation

If you are using this work, please cite it as:

@inproceedings{zhengguha2021,
	title={When Does Pretraining Help? Assessing Self-Supervised Learning for Law and the CaseHOLD Dataset},
	author={Lucia Zheng and Neel Guha and Brandon R. Anderson and Peter Henderson and Daniel E. Ho},
	year={2021},
	eprint={2104.08671},
	archivePrefix={arXiv},
	primaryClass={cs.CL},
	booktitle={Proceedings of the 18th International Conference on Artificial Intelligence and Law},
	publisher={Association for Computing Machinery},
	note={(in press)}
}

Lucia Zheng, Neel Guha, Brandon R. Anderson, Peter Henderson, and Daniel E. Ho. 2021. When Does Pretraining Help? Assessing Self-Supervised Learning for Law and the CaseHOLD Dataset. In Proceedings of the 18th International Conference on Artificial Intelligence and Law (ICAIL '21), June 21-25, 2021, São Paulo, Brazil. ACM Inc., New York, NY, (in press). arXiv: 2104.08671 [cs.CL].

Owner
RegLab
RegLab
Process JSON files for neural recording sessions using Medtronic's BrainSense Percept PC neurostimulator

percept_processing This code processes JSON files for streamed neural data using Medtronic's Percept PC neurostimulator with BrainSense Technology for

Maria Olaru 3 Jun 06, 2022
First-Order Probabilistic Programming Language

FOPPL: A First-Order Probabilistic Programming Language This is an implementation of FOPPL, an S-expression based probabilistic programming language d

Renato Costa 23 Dec 20, 2022
NudeNet: Neural Nets for Nudity Classification, Detection and selective censoring

NudeNet: Neural Nets for Nudity Classification, Detection and selective censoring Uncensored version of the following image can be found at https://i.

notAI.tech 1.1k Dec 29, 2022
Yolov5+SlowFast: Realtime Action Detection Based on PytorchVideo

Yolov5+SlowFast: Realtime Action Detection A realtime action detection frame work based on PytorchVideo. Here are some details about our modification:

WuFan 181 Dec 30, 2022
Lightweight library to build and train neural networks in Theano

Lasagne Lasagne is a lightweight library to build and train neural networks in Theano. Its main features are: Supports feed-forward networks such as C

Lasagne 3.8k Dec 29, 2022
Code for paper "A Critical Assessment of State-of-the-Art in Entity Alignment" (https://arxiv.org/abs/2010.16314)

A Critical Assessment of State-of-the-Art in Entity Alignment This repository contains the source code for the paper A Critical Assessment of State-of

Max Berrendorf 16 Oct 14, 2022
Code for Estimating Multi-cause Treatment Effects via Single-cause Perturbation (NeurIPS 2021)

Estimating Multi-cause Treatment Effects via Single-cause Perturbation (NeurIPS 2021) Single-cause Perturbation (SCP) is a framework to estimate the m

Zhaozhi Qian 9 Sep 28, 2022
This repository is all about spending some time the with the original problem posed by Minsky and Papert

This repository is all about spending some time the with the original problem posed by Minsky and Papert. Working through this problem is a great way to begin learning computer vision.

Jaissruti Nanthakumar 1 Jan 23, 2022
make ASCII Art by Deep Learning

DeepAA This is convolutional neural networks generating ASCII art. This repository is under construction. This work is accepted by NIPS 2017 Workshop,

OsciiArt 1.4k Dec 28, 2022
KoRean based ELECTRA pre-trained models (KR-ELECTRA) for Tensorflow and PyTorch

KoRean based ELECTRA (KR-ELECTRA) This is a release of a Korean-specific ELECTRA model with comparable or better performances developed by the Computa

12 Jun 03, 2022
Anderson Acceleration for Deep Learning

Anderson Accelerated Deep Learning (AADL) AADL is a Python package that implements the Anderson acceleration to speed-up the training of deep learning

Oak Ridge National Laboratory 7 Nov 24, 2022
Exploring Simple 3D Multi-Object Tracking for Autonomous Driving (ICCV 2021)

Exploring Simple 3D Multi-Object Tracking for Autonomous Driving Chenxu Luo, Xiaodong Yang, Alan Yuille Exploring Simple 3D Multi-Object Tracking for

QCraft 141 Nov 21, 2022
A generalized framework for prototyping full-stack cooperative driving automation applications under CARLA+SUMO.

OpenCDA OpenCDA is a SIMULATION tool integrated with a prototype cooperative driving automation (CDA; see SAE J3216) pipeline as well as regular autom

UCLA Mobility Lab 726 Dec 29, 2022
Official implementation of NeurIPS 2021 paper "Contextual Similarity Aggregation with Self-attention for Visual Re-ranking"

CSA: Contextual Similarity Aggregation with Self-attention for Visual Re-ranking PyTorch training code for CSA (Contextual Similarity Aggregation). We

Hui Wu 19 Oct 21, 2022
A command line simple note taking app

Why yet another note taking program? note was designed with a very specific target in mind: me, and my 2354 scraps of paper. It runs from the command

64 Nov 20, 2022
A program that can analyze videos according to the weights you select

MaskMonitor A program that can analyze videos according to the weights you select 下載 訓練完的 weight檔案 執行 MaskDetection.py 內部可更改 輸入來源(鏡頭, 影片, 圖片) 以及輸出條件(人

Patrick_star 1 Nov 07, 2021
A sketch extractor for anime/illustration.

Anime2Sketch Anime2Sketch: A sketch extractor for illustration, anime art, manga By Xiaoyu Xiang Updates 2021.5.2: Upload more example results of anim

Xiaoyu Xiang 1.6k Jan 01, 2023
Code for Paper: Self-supervised Learning of Motion Capture

Self-supervised Learning of Motion Capture This is code for the paper: Hsiao-Yu Fish Tung, Hsiao-Wei Tung, Ersin Yumer, Katerina Fragkiadaki, Self-sup

Hsiao-Yu Fish Tung 87 Jul 25, 2022
Learning Generative Models of Textured 3D Meshes from Real-World Images, ICCV 2021

Learning Generative Models of Textured 3D Meshes from Real-World Images This is the reference implementation of "Learning Generative Models of Texture

Dario Pavllo 115 Jan 07, 2023