The official implementation of Variable-Length Piano Infilling (VLI).

Overview

Variable-Length-Piano-Infilling

The official implementation of Variable-Length Piano Infilling (VLI). (paper: Variable-Length Music Score Infilling via XLNet and Musically Specialized Positional Encoding)

VLI is a new Transformer-based model for music score infilling, i.e., to generate a polyphonic music sequence that fills in the gap between given past and future contexts. Our model can infill a variable number of notes for different time spans.

Installation

  1. Clone and install the modified Huggingface Transformer package.
  2. Clone this repo and install the required packages.
git clone https://github.com/reichang182/Variable-Length-Piano-Infilling.git
cd  Variable-Length-Piano-Infilling
pip install -r requirement.txt
  1. Download and unzip the AIlabs.tw Pop1K7 dataset. (Download link: here).

Training & Testing

# Prepare data
python prepare_data.py \
	--midi-folder datasets/midi/midi_synchronized/ \
	--save-folder ./

# Train the model
python train.py --train

# Test the trained model
python train.py

Baselines

The codes to run baselines in our paper are in the baselines folder. We implement ILM and FELIX according to their paper (ILM and FELIX) and based on the implementation of Transformer-XL and BERT in Huggingface Transformer. They can also be trained and tested through the same command as our model does above.

# cd baselines/ILM or cd baselines/FELIX

# Train the model
python train.py --train \
	--dict-file ../../dictionary.pickle \
	--data-file ../../worded_data.pickle

# Test the trained model
python train.py \
	--dict-file ../../dictionary.pickle \
	--data-file ../../worded_data.pickle

Architecture

drawing

Results

drawing

The training NLL-loss curves of ours and the baseline models.


drawing

The objective metrics evaluated on the music pieces generated by VLI(ours), ILM, FELIX, and the real music.


drawing

Results of the user study: mean opinion scores in 1–5 in M(melodic fluency), R(rhythmic fluency), I(im-pression), and percentage of votes in F(favorite), from ‘all’ the participants or only the music ‘pro’-fessionals.
Codes for the compilation and visualization examples to the HIF vegetation dataset

High-impedance vegetation fault dataset This repository contains the codes that compile the "Vegetation Conduction Ignition Test Report" data, which a

1 Dec 12, 2021
Really awesome semantic segmentation

really-awesome-semantic-segmentation A list of all papers on Semantic Segmentation and the datasets they use. This site is maintained by Holger Caesar

Holger Caesar 400 Nov 28, 2022
Mail classification with tensorflow and MS Exchange Server (ham or spam).

Mail classification with tensorflow and MS Exchange Server (ham or spam).

Metin Karatas 1 Sep 11, 2021
Use stochastic processes to generate samples and use them to train a fully-connected neural network based on Keras

Use stochastic processes to generate samples and use them to train a fully-connected neural network based on Keras which will then be used to generate residuals

Federico Lopez 2 Jan 14, 2022
RADIal is available now! Check the download section

Latest news: RADIal is available now! Check the download section. However, because we are currently working on the data anonymization, we provide for

valeo.ai 55 Jan 03, 2023
IA for recognising Traffic Signs using Keras [Tensorflow]

Traffic Signs Recognition ⚠️ 🚦 Fundamentals of Intelligent Systems Introduction 📄 Development of a neural network capable of recognizing nine differ

Sebastián Fernández García 2 Dec 19, 2022
Face Mask Detector by live camera using tensorflow-keras, openCV and Python

Face Mask Detector 😷 by Live Camera Detecting masked or unmasked faces by live camera with percentange of mask occupation About Project: This an Arti

Karan Shingde 2 Apr 04, 2022
Quickly and easily create / train a custom DeepDream model

Dream-Creator This project aims to simplify the process of creating a custom DeepDream model by using pretrained GoogleNet models and custom image dat

55 Dec 27, 2022
An end-to-end implementation of intent prediction with Metaflow and other cool tools

You Don't Need a Bigger Boat An end-to-end (Metaflow-based) implementation of an intent prediction flow for kids who can't MLOps good and wanna learn

Jacopo Tagliabue 614 Dec 31, 2022
git《Joint Entity and Relation Extraction with Set Prediction Networks》(2020) GitHub:

Joint Entity and Relation Extraction with Set Prediction Networks Source code for Joint Entity and Relation Extraction with Set Prediction Networks. W

130 Dec 13, 2022
BaseCls BaseCls 是一个基于 MegEngine 的预训练模型库,帮助大家挑选或训练出更适合自己科研或者业务的模型结构

BaseCls BaseCls 是一个基于 MegEngine 的预训练模型库,帮助大家挑选或训练出更适合自己科研或者业务的模型结构。 文档地址:https://basecls.readthedocs.io 安装 安装环境 BaseCls 需要 Python = 3.6。 BaseCls 依赖 M

MEGVII Research 28 Dec 23, 2022
Human head pose estimation using Keras over TensorFlow.

RealHePoNet: a robust single-stage ConvNet for head pose estimation in the wild.

Rafael Berral Soler 71 Jan 05, 2023
Resilience from Diversity: Population-based approach to harden models against adversarial attacks

Resilience from Diversity: Population-based approach to harden models against adversarial attacks Requirements To install requirements: pip install -r

0 Nov 23, 2021
Steerable discovery of neural audio effects

Steerable discovery of neural audio effects Christian J. Steinmetz and Joshua D. Reiss Abstract Applications of deep learning for audio effects often

Christian J. Steinmetz 182 Dec 29, 2022
Offline Reinforcement Learning with Implicit Q-Learning

Offline Reinforcement Learning with Implicit Q-Learning This repository contains the official implementation of Offline Reinforcement Learning with Im

Ilya Kostrikov 126 Jan 06, 2023
PyTorch Kafka Dataset: A definition of a dataset to get training data from Kafka.

PyTorch Kafka Dataset: A definition of a dataset to get training data from Kafka.

ERTIS Research Group 7 Aug 01, 2022
Image processing in Python

scikit-image: Image processing in Python Website (including documentation): https://scikit-image.org/ Mailing list: https://mail.python.org/mailman3/l

Image Processing Toolbox for SciPy 5.2k Dec 31, 2022
Reverse engineer your pytorch vision models, in style

🔍 Rover Reverse engineer your CNNs, in style Rover will help you break down your CNN and visualize the features from within the model. No need to wri

Mayukh Deb 32 Sep 24, 2022
SenseNet is a sensorimotor and touch simulator for deep reinforcement learning research

SenseNet is a sensorimotor and touch simulator for deep reinforcement learning research

59 Feb 25, 2022
Generate indoor scenes with Transformers

SceneFormer: Indoor Scene Generation with Transformers Initial code release for the Sceneformer paper, contains models, train and test scripts for the

Chandan Yeshwanth 110 Dec 06, 2022