[NeurIPS 2021] Well-tuned Simple Nets Excel on Tabular Datasets

Overview

[NeurIPS 2021] Well-tuned Simple Nets Excel on Tabular Datasets

Introduction

This repo contains the source code accompanying the paper:

Well-tuned Simple Nets Excel on Tabular Datasets

Authors: Arlind Kadra, Marius Lindauer, Frank Hutter, Josif Grabocka

Tabular datasets are the last "unconquered castle" for deep learning, with traditional ML methods like Gradient-Boosted Decision Trees still performing strongly even against recent specialized neural architectures. In this paper, we hypothesize that the key to boosting the performance of neural networks lies in rethinking the joint and simultaneous application of a large set of modern regularization techniques. As a result, we propose regularizing plain Multilayer Perceptron (MLP) networks by searching for the optimal combination/cocktail of 13 regularization techniques for each dataset using a joint optimization over the decision on which regularizers to apply and their subsidiary hyperparameters.

We empirically assess the impact of these regularization cocktails for MLPs on a large-scale empirical study comprising 40 tabular datasets and demonstrate that: (i) well-regularized plain MLPs significantly outperform recent state-of-the-art specialized neural network architectures, and (ii) they even outperform strong traditional ML methods, such as XGBoost.

News: Our work is accepted in the Thirty-fifth Conference on Neural Information Processing Systems (NeurIPS 2021).

Setting up the virtual environment

Our work is built on top of AutoPyTorch. To look at our implementation of the regularization cocktail ingredients, you can do the following:

git clone https://github.com/automl/Auto-PyTorch.git
cd Auto-PyTorch/
git checkout regularization_cocktails

To install the version of AutoPyTorch that features our work, you can use these additional commands:

# The following commands assume the user is in the cloned directory
conda create -n reg_cocktails python=3.8
conda activate reg_cocktails
conda install gxx_linux-64 gcc_linux-64 swig
cat requirements.txt | xargs -n 1 -L 1 pip install
python setup.py install

Running the Regularization Cocktail code

The main files to run the regularization cocktails are in the cocktails folder and are main_experiment.py and refit_experiment.py. The first module can be used to start a full HPO search, while, the other module can be used to refit on certain datasets when the time does not suffice to perform the full HPO search and to complete the refit of the incumbent hyperparameter configuration.

The main arguments for main_experiment.py:

  • --task_id: The task id in OpenML. Basically the dataset that will be used in the experiment.
  • --wall_time: The total runtime to be used. It is the total runtime for the HPO search and also final refit.
  • --func_eval_time: The maximal time for one function evaluation parametrized by a certain hyperparameter configuration.
  • --epochs: The number of epochs for one hyperparameter configuration to be evaluated on.
  • --seed: The seed to be used for the run.
  • --tmp_dir: The temporary directory for the results to be stored in.
  • --output_dir: The output directory for the results to be stored in.
  • --nr_workers: The number of workers which corresponds to the number of hyperparameter configurations run in parallel.
  • --nr_threads: The number of threads.
  • --cash_cocktail: An important flag that activates the regularization cocktail formulation.

A minimal example of running the regularization cocktails:

python main_experiment.py --task_id 233088 --wall_time 600 --func_eval_time 60 --epochs 10 --seed 42 --cash_cocktail True

The example above will run the regularization cocktails for 10 minutes, with a function evaluation limit of 50 seconds for task 233088. Every hyperparameter configuration will be evaluated for 10 epochs, the seed 42 will be used for the experiment and data splits.

A minimal example of running only one regularization method:

python main_experiment.py --task_id 233088 --wall_time 600 --func_eval_time 60 --epochs 10 --seed 42 --use_weight_decay

In case you would like to investigate individual regularization methods, you can look at the different arguments that control them in the main_experiment.py. Additionally, if you want to remove the limit on the number of hyperparameter configurations, you can remove the following lines:

smac_scenario_args={
    'runcount_limit': number_of_configurations_limit,
}

Plots

The plots that are included in our paper were generated from the functions in the module results.py. Although mentioned in most function documentations, most of the functions that plot the baseline diagrams and plots expect a folder structure as follows:

common_result_folder/baseline/results.csv

There are functions inside the module itself that generate the results.csv files.

Baselines

The code for running the baselines can be found in the baselines folder.

  • TabNet, XGBoost, CatBoost can be found in the baselines/bohb folder.
  • The other baselines like AutoGluon, auto-sklearn and Node can be found in the corresponding folders named the same.

TabNet, XGBoost, CatBoost and AutoGluon have the same two main files as our regularization cocktails, main_experiment.py and refit_experiment.py.

Figures

alt text

Citation

@article{kadra2021regularization,
  title={Regularization is all you Need: Simple Neural Nets can Excel on Tabular Data},
  author={Kadra, Arlind and Lindauer, Marius and Hutter, Frank and Grabocka, Josif},
  journal={arXiv preprint arXiv:2106.11189},
  year={2021}
}
Code for "LASR: Learning Articulated Shape Reconstruction from a Monocular Video". CVPR 2021.

LASR Installation Build with conda conda env create -f lasr.yml conda activate lasr # install softras cd third_party/softras; python setup.py install;

Google 157 Dec 26, 2022
Official implementation of the PICASO: Permutation-Invariant Cascaded Attentional Set Operator

PICASO Official PyTorch implemetation for the paper PICASO:Permutation-Invariant Cascaded Attentive Set Operator. Requirements Python 3 torch = 1.0 n

Samira Zare 0 Dec 23, 2021
Harmonic Memory Networks for Graph Completion

HMemNetworks Code and documentation for Harmonic Memory Networks, a series of models for compositionally assembling representations of graph elements

mlalisse 0 Oct 27, 2021
This repo provides code for QB-Norm (Cross Modal Retrieval with Querybank Normalisation)

This repo provides code for QB-Norm (Cross Modal Retrieval with Querybank Normalisation) Usage example python dynamic_inverted_softmax.py --sims_train

36 Dec 29, 2022
Equivariant GNN for the prediction of atomic multipoles up to quadrupoles.

Equivariant Graph Neural Network for Atomic Multipoles Description Repository for the Model used in the publication 'Learning Atomic Multipoles: Predi

16 Nov 22, 2022
Implementation for "Exploiting Aliasing for Manga Restoration" (CVPR 2021)

[CVPR Paper](To appear) | [Project Website](To appear) | BibTex Introduction As a popular entertainment art form, manga enriches the line drawings det

133 Dec 15, 2022
Code for EmBERT, a transformer model for embodied, language-guided visual task completion.

Code for EmBERT, a transformer model for embodied, language-guided visual task completion.

41 Jan 03, 2023
Implementation of "Meta-rPPG: Remote Heart Rate Estimation Using a Transductive Meta-Learner"

Meta-rPPG: Remote Heart Rate Estimation Using a Transductive Meta-Learner This repository is the official implementation of Meta-rPPG: Remote Heart Ra

Eugene Lee 137 Dec 13, 2022
Official repository for "Action-Based Conversations Dataset: A Corpus for Building More In-Depth Task-Oriented Dialogue Systems"

Action-Based Conversations Dataset (ABCD) This respository contains the code and data for ABCD (Chen et al., 2021) Introduction Whereas existing goal-

ASAPP Research 49 Oct 09, 2022
An Object Oriented Programming (OOP) interface for Ontology Web language (OWL) ontologies.

Enabling a developer to use Ontology Web Language (OWL) along with its reasoning capabilities in an Object Oriented Programming (OOP) paradigm, by pro

TheEngineRoom-UniGe 7 Sep 23, 2022
Implementation of Segnet, FCN, UNet , PSPNet and other models in Keras.

Image Segmentation Keras : Implementation of Segnet, FCN, UNet, PSPNet and other models in Keras. Implementation of various Deep Image Segmentation mo

Divam Gupta 2.6k Jan 05, 2023
VIMPAC: Video Pre-Training via Masked Token Prediction and Contrastive Learning

This is a release of our VIMPAC paper to illustrate the implementations. The pretrained checkpoints and scripts will be soon open-sourced in HuggingFace transformers.

Hao Tan 74 Dec 03, 2022
kapre: Keras Audio Preprocessors

Kapre Keras Audio Preprocessors - compute STFT, ISTFT, Melspectrogram, and others on GPU real-time. Tested on Python 3.6 and 3.7 Why Kapre? vs. Pre-co

Keunwoo Choi 867 Dec 29, 2022
LBK 26 Dec 28, 2022
Python project to take sound as input and output as RGB + Brightness values suitable for DMX

sound-to-light Python project to take sound as input and output as RGB + Brightness values suitable for DMX Current goals: Get one pixel working: Vary

Bobby Cox 1 Nov 17, 2021
Code for "Learning From Multiple Experts: Self-paced Knowledge Distillation for Long-tailed Classification", ECCV 2020 Spotlight

Learning From Multiple Experts: Self-paced Knowledge Distillation for Long-tailed Classification Implementation of "Learning From Multiple Experts: Se

27 Nov 05, 2022
Pytorch implementation for Patient Knowledge Distillation for BERT Model Compression

Patient Knowledge Distillation for BERT Model Compression Knowledge distillation for BERT model Installation Run command below to install the environm

Siqi 180 Dec 19, 2022
Contrastively Disentangled Sequential Variational Audoencoder

Contrastively Disentangled Sequential Variational Audoencoder (C-DSVAE) Overview This is the implementation for our C-DSVAE, a novel self-supervised d

Junwen Bai 35 Dec 24, 2022
PyTorch Implementation of PIXOR: Real-time 3D Object Detection from Point Clouds

PIXOR: Real-time 3D Object Detection from Point Clouds This is a custom implementation of the paper from Uber ATG using PyTorch 1.0. It represents the

Philip Huang 270 Dec 14, 2022
BABEL: Bodies, Action and Behavior with English Labels [CVPR 2021]

BABEL is a large dataset with language labels describing the actions being performed in mocap sequences. BABEL labels about 43 hours of mocap sequences from AMASS [1] with action labels.

113 Dec 28, 2022