[NeurIPS 2021] Well-tuned Simple Nets Excel on Tabular Datasets

Overview

[NeurIPS 2021] Well-tuned Simple Nets Excel on Tabular Datasets

Introduction

This repo contains the source code accompanying the paper:

Well-tuned Simple Nets Excel on Tabular Datasets

Authors: Arlind Kadra, Marius Lindauer, Frank Hutter, Josif Grabocka

Tabular datasets are the last "unconquered castle" for deep learning, with traditional ML methods like Gradient-Boosted Decision Trees still performing strongly even against recent specialized neural architectures. In this paper, we hypothesize that the key to boosting the performance of neural networks lies in rethinking the joint and simultaneous application of a large set of modern regularization techniques. As a result, we propose regularizing plain Multilayer Perceptron (MLP) networks by searching for the optimal combination/cocktail of 13 regularization techniques for each dataset using a joint optimization over the decision on which regularizers to apply and their subsidiary hyperparameters.

We empirically assess the impact of these regularization cocktails for MLPs on a large-scale empirical study comprising 40 tabular datasets and demonstrate that: (i) well-regularized plain MLPs significantly outperform recent state-of-the-art specialized neural network architectures, and (ii) they even outperform strong traditional ML methods, such as XGBoost.

News: Our work is accepted in the Thirty-fifth Conference on Neural Information Processing Systems (NeurIPS 2021).

Setting up the virtual environment

Our work is built on top of AutoPyTorch. To look at our implementation of the regularization cocktail ingredients, you can do the following:

git clone https://github.com/automl/Auto-PyTorch.git
cd Auto-PyTorch/
git checkout regularization_cocktails

To install the version of AutoPyTorch that features our work, you can use these additional commands:

# The following commands assume the user is in the cloned directory
conda create -n reg_cocktails python=3.8
conda activate reg_cocktails
conda install gxx_linux-64 gcc_linux-64 swig
cat requirements.txt | xargs -n 1 -L 1 pip install
python setup.py install

Running the Regularization Cocktail code

The main files to run the regularization cocktails are in the cocktails folder and are main_experiment.py and refit_experiment.py. The first module can be used to start a full HPO search, while, the other module can be used to refit on certain datasets when the time does not suffice to perform the full HPO search and to complete the refit of the incumbent hyperparameter configuration.

The main arguments for main_experiment.py:

  • --task_id: The task id in OpenML. Basically the dataset that will be used in the experiment.
  • --wall_time: The total runtime to be used. It is the total runtime for the HPO search and also final refit.
  • --func_eval_time: The maximal time for one function evaluation parametrized by a certain hyperparameter configuration.
  • --epochs: The number of epochs for one hyperparameter configuration to be evaluated on.
  • --seed: The seed to be used for the run.
  • --tmp_dir: The temporary directory for the results to be stored in.
  • --output_dir: The output directory for the results to be stored in.
  • --nr_workers: The number of workers which corresponds to the number of hyperparameter configurations run in parallel.
  • --nr_threads: The number of threads.
  • --cash_cocktail: An important flag that activates the regularization cocktail formulation.

A minimal example of running the regularization cocktails:

python main_experiment.py --task_id 233088 --wall_time 600 --func_eval_time 60 --epochs 10 --seed 42 --cash_cocktail True

The example above will run the regularization cocktails for 10 minutes, with a function evaluation limit of 50 seconds for task 233088. Every hyperparameter configuration will be evaluated for 10 epochs, the seed 42 will be used for the experiment and data splits.

A minimal example of running only one regularization method:

python main_experiment.py --task_id 233088 --wall_time 600 --func_eval_time 60 --epochs 10 --seed 42 --use_weight_decay

In case you would like to investigate individual regularization methods, you can look at the different arguments that control them in the main_experiment.py. Additionally, if you want to remove the limit on the number of hyperparameter configurations, you can remove the following lines:

smac_scenario_args={
    'runcount_limit': number_of_configurations_limit,
}

Plots

The plots that are included in our paper were generated from the functions in the module results.py. Although mentioned in most function documentations, most of the functions that plot the baseline diagrams and plots expect a folder structure as follows:

common_result_folder/baseline/results.csv

There are functions inside the module itself that generate the results.csv files.

Baselines

The code for running the baselines can be found in the baselines folder.

  • TabNet, XGBoost, CatBoost can be found in the baselines/bohb folder.
  • The other baselines like AutoGluon, auto-sklearn and Node can be found in the corresponding folders named the same.

TabNet, XGBoost, CatBoost and AutoGluon have the same two main files as our regularization cocktails, main_experiment.py and refit_experiment.py.

Figures

alt text

Citation

@article{kadra2021regularization,
  title={Regularization is all you Need: Simple Neural Nets can Excel on Tabular Data},
  author={Kadra, Arlind and Lindauer, Marius and Hutter, Frank and Grabocka, Josif},
  journal={arXiv preprint arXiv:2106.11189},
  year={2021}
}
Supplementary code for the experiments described in the 2021 ISMIR submission: Leveraging Hierarchical Structures for Few Shot Musical Instrument Recognition.

Music Trees Supplementary code for the experiments described in the 2021 ISMIR submission: Leveraging Hierarchical Structures for Few Shot Musical Ins

Hugo Flores García 32 Nov 22, 2022
OHLC Average Prediction of Apple Inc. Using LSTM Recurrent Neural Network

Stock Price Prediction of Apple Inc. Using Recurrent Neural Network OHLC Average Prediction of Apple Inc. Using LSTM Recurrent Neural Network Dataset:

Nouroz Rahman 410 Jan 05, 2023
PyTorch common framework to accelerate network implementation, training and validation

pytorch-framework PyTorch common framework to accelerate network implementation, training and validation. This framework is inspired by works from MML

Dongliang Cao 3 Dec 19, 2022
Automatic Differentiation Multipole Moment Molecular Forcefield

Automatic Differentiation Multipole Moment Molecular Forcefield Performance notes On a single gpu, using waterbox_31ang.pdb example from MPIDplugin wh

4 Jan 07, 2022
FlexConv: Continuous Kernel Convolutions with Differentiable Kernel Sizes

FlexConv: Continuous Kernel Convolutions with Differentiable Kernel Sizes This repository contains the source code accompanying the paper: FlexConv: C

Robert-Jan Bruintjes 96 Dec 12, 2022
Pytorch implementation of the paper Improving Text-to-Image Synthesis Using Contrastive Learning

T2I_CL This is the official Pytorch implementation of the paper Improving Text-to-Image Synthesis Using Contrastive Learning Requirements Linux Python

42 Dec 31, 2022
3D Avatar Lip Syncronization from speech (JALI based face-rigging)

visemenet-inference Inference Demo of "VisemeNet-tensorflow" VisemeNet is an audio-driven animator centric speech animation driving a JALI or standard

Junhwan Jang 17 Dec 20, 2022
Official repository for MixFaceNets: Extremely Efficient Face Recognition Networks

MixFaceNets This is the official repository of the paper: MixFaceNets: Extremely Efficient Face Recognition Networks. (Accepted in IJCB2021) https://i

Fadi Boutros 51 Dec 13, 2022
Instant-Teaching: An End-to-End Semi-Supervised Object Detection Framework

This repo is the official implementation of "Instant-Teaching: An End-to-End Semi-Supervised Object Detection Framework". @inproceedings{zhou2021insta

34 Dec 31, 2022
An implementation of EWC with PyTorch

EWC.pytorch An implementation of Elastic Weight Consolidation (EWC), proposed in James Kirkpatrick et al. Overcoming catastrophic forgetting in neural

Ryuichiro Hataya 166 Dec 22, 2022
Dashboard for the COVID19 spread

COVID-19 Data Explorer App A streamlit Dashboard for the COVID-19 spread. The app is live at: [https://covid19.cwerner.ai]. New data is queried from G

Christian Werner 22 Sep 29, 2022
Monocular 3D pose estimation. OpenVINO. CPU inference or iGPU (OpenCL) inference.

human-pose-estimation-3d-python-cpp RealSenseD435 (RGB) 480x640 + CPU Corei9 45 FPS (Depth is not used) 1. Run 1-1. RealSenseD435 (RGB) 480x640 + CPU

Katsuya Hyodo 8 Oct 03, 2022
PyTorch implementation of normalizing flow models

PyTorch implementation of normalizing flow models

Vincent Stimper 242 Jan 02, 2023
Semi-supervised Domain Adaptation via Minimax Entropy

Semi-supervised Domain Adaptation via Minimax Entropy (ICCV 2019) Install pip install -r requirements.txt The code is written for Pytorch 0.4.0, but s

Vision and Learning Group 243 Jan 09, 2023
Adaptive Dropblock Enhanced GenerativeAdversarial Networks for Hyperspectral Image Classification

This repo holds the codes of our paper: Adaptive Dropblock Enhanced GenerativeAdversarial Networks for Hyperspectral Image Classification, which is ac

Feng Gao 17 Dec 28, 2022
use tensorflow 2.0 to tell a dog and cat from a specified picture

dog_or_cat use tensorflow 2.0 to tell a dog and cat from a specified picture This is one of the classic experiments for the introduction of deep learn

你这个代码我看不懂 1 Oct 22, 2021
NER for Indian languages

CL-NERIL: A Cross-Lingual Model for NER in Indian Languages Code for the paper - https://arxiv.org/abs/2111.11815 Setup Setup a virtual environment Th

Akshara P 0 Nov 24, 2021
Kernel Point Convolutions

Created by Hugues THOMAS Introduction Update 27/04/2020: New PyTorch implementation available. With SemanticKitti, and Windows supported. This reposit

Hugues THOMAS 584 Jan 07, 2023
Object classification with basic computer vision techniques

naive-image-classification Object classification with basic computer vision techniques. Final assignment for the computer vision course I took at univ

2 Jul 01, 2022
PyTorch Implementation of Unsupervised Depth Completion with Calibrated Backprojection Layers (ORAL, ICCV 2021)

Unsupervised Depth Completion with Calibrated Backprojection Layers PyTorch implementation of Unsupervised Depth Completion with Calibrated Backprojec

80 Dec 13, 2022