Educational project on how to build an ETL (Extract, Transform, Load) data pipeline, orchestrated with Airflow.

Overview

ETL Pipeline with Airflow, Spark, s3, MongoDB and Amazon Redshift

AboutScenarioBase ConceptsPrerequisitesSet-upInstallationAirflow InterfacePipeline Task by TaskShut Down and Restart AirflowLearning Resources


About

Educational project on how to build an ETL (Extract, Transform, Load) data pipeline, orchestrated with Airflow.

An AWS s3 bucket is used as a Datalake in which json files are stored. The data is extracted from a json and parsed (cleaned). It is then transformed/processed with Spark (PySpark) and loaded/stored in either a Mongodb database or in an Amazon Redshift Data Warehouse.

The pipeline architecture - author's interpretation:

Note: Since this project was built for learning purposes and as an example, it functions only for a single scenario and data schema.

The project is built in Python and it has 2 main parts:

  1. The Airflow DAG file, dags/dagRun.py, which orchestrates the data pipeline tasks.
  2. The PySpark data transformation/processing script, located in sparkFiles/sparkProcess.py

Note: The code and especially the comments in the python files dags/dagRun.py and sparkFiles/sparkProcess.py are intentionally verbose for a better understanding of the functionality.

Scenario

The Romanian COVID-19 data, provided by https://datelazi.ro/, contains COVID-19 data for each county, including the total COVID numbers from one day to the next. It does not contain the difference in numbers between the days (i.e. for county X in day 1 there were 7 cases, in day 2 there were 37 cases). This data is loaded as a json file in the s3 bucket.

Find the differences between days for all counties (i.e. for county X there were 30 more cases in day 2 than in day 1). If the difference is smaller than 0 (e.g. because of a data recording error), then the difference for that day should be 0.

Base concepts

Prerequisites

Set-up

Download / pull the repo to your desired location.

You will have to create an AWS s3 user specifficaly for Airflow to interact with the s3 bucket. The credentials for that user will have to be saved in the s3 file found the directory /airflow-data/creds:

[airflow-spark1]
aws_access_key_id = 
aws_secret_access_key = 

On rows 17 and 18 in dags/dagRun.py you have the option to choose what databases system to use, mongoDB (noSQL) or Amazon Redshift (RDBMS), just by commenting/uncommenting one or the other:

# database = 'mongoDB'
database = 'Redshift'

If you want to use mongoDB, you will have to enter the mongoDB connection string (or environment variable or file with the string) in the dags/dagRun.py file, line 22:

client = pymongo.MongoClient('mongoDB_connection_string')

If you want to use a Redshift cluster, you will have to provide your Amazon Redshift database name, host and the rest of the credentials from row 29 to 34 in dags/dagRun.py:

dbname = 'testairflow'
host = '*******************************.eu-central-1.redshift.amazonaws.com'
port = '****'
user = '*********'
password = '********************'
awsIAMrole = 'arn:aws:iam::************:role/*******

You will have to change the s3 bucket name and file key (the name of the file saved in the s3 bucket) located at lines 148 and line 150 in dags/dagRun.py:

# name of the file in the AWS s3 bucket
key = 'countyData.json'
# name of the AWS s3 bucket
bucket = 'renato-airflow-raw'

In the repo directory, execute the following command that will create the .env file containig the Airflow UID and GID needed by docker-compose:

echo -e "AIRFLOW_UID=$(id -u)\nAIRFLOW_GID=0" > .env

Installation

Start the installation with:

docker-compose up -d

This command will pull and create Docker images and containers for Airflow, according to the instructions in the docker-compose.yml file:

After everything has been installed, you can check the status of your containers (if they are healthy) with:

docker ps

Note: it might take up to 30 seconds for the containers to have the healthy flag after starting.

Airflow Interface

You can now access the Airflow web interface by going to http://localhost:8080/. If you have not changed them in the docker-compose.yml file, the default user is airflow and password is airflow:

After signing in, the Airflow home page is the DAGs list page. Here you will see all your DAGs and the Airflow example DAGs, sorted alphabetically.

Any DAG python script saved in the directory dags/, will show up on the DAGs page (e.g. the first DAG, analyze_json_data, is the one built for this project).

Note: If you update the code in the python DAG script, the airflow DAGs page has to be refreshed

Note: If you do not want to see any Airflow example dags, se the AIRFLOW__CORE__LOAD_EXAMPLES: flag to False in the docker-compose.yml file before starting the installation.

Click on the name of the dag to open the DAG details page:

On the Graph View page you can see the dag running through each task (getLastProcessedDate, getDate, etc) after it has been unpaused and trigerred:

Pipeline Task by Task

Task getLastProcessedDate

Finds the last processed date in the mongo database and saves/pushes it in an Airflow XCom

Task getDate

Grabs the data saved in the XCom and depending of the value pulled, returns the task id parseJsonFile or the task id endRun

Task parseJsonFile

The json contains unnecessary data for this case, so it needs to be parsed to extract only the daily total numbers for each county.

If there is any new data to be processed (the date extracted in the task getLastProcessedDate is older than dates in the data) it is saved in a temp file in the directory sparkFiles:

i.e.: for the county AB, on the 7th of April, there were 1946 COVID cases, on the 8th of April there were 19150 cases

It also returns the task id endRun if there was no new data, or the task ID processParsedData

Task processParsedData

Executes the PySpark script sparkFiles/sparkProcess.py.

The parsed data is processed and the result is saved in another temporary file in the sparkFiles directory:

i.e.: for the county AB, on the 8th of April there were 104 more cases than on the 7th of April

Task saveToDB

Save the processed data either in the mongoDB database:

Or in Redshift:

Note: The Redshift column names are the full name of the counties as the short version for some of them conflicts with SQL reserved words

Task endRun

Dummy task used as the end of the pipeline

Shut Down and Restart Airflow

If you want to make changes to any of the configuration files docker-compose.yml, Dockerfile, requirements.txt you will have to shut down the Airflow instance with:

docker-compose down

This command will shut down and delete any containers created/used by Airflow.

For any changes made in the configuration files to be applied, you will have to rebuild the Airflow images with the command:

docker-compose build

Recreate all the containers with:

docker-compose up -d

Learning Resources

These are some useful learning resources for anyone interested in Airflow and Spark:

License

You can check out the full license here

This project is licensed under the terms of the MIT license.

Owner
Renato
Renato
Bearsql allows you to query pandas dataframe with sql syntax.

Bearsql adds sql syntax on pandas dataframe. It uses duckdb to speedup the pandas processing and as the sql engine

14 Jun 22, 2022
TE-dependent analysis (tedana) is a Python library for denoising multi-echo functional magnetic resonance imaging (fMRI) data

tedana: TE Dependent ANAlysis TE-dependent analysis (tedana) is a Python library for denoising multi-echo functional magnetic resonance imaging (fMRI)

136 Dec 22, 2022
PyEmits, a python package for easy manipulation in time-series data.

PyEmits, a python package for easy manipulation in time-series data. Time-series data is very common in real life. Engineering FSI industry (Financial

Thompson 5 Sep 23, 2022
Python ELT Studio, an application for building ELT (and ETL) data flows.

The Python Extract, Load, Transform Studio is an application for performing ELT (and ETL) tasks. Under the hood the application consists of a two parts.

Schlerp 55 Nov 18, 2022
This is a python script to navigate and extract the FSD50K dataset

FSD50K navigator This is a script I use to navigate the sound dataset from FSK50K.

sweemeng 2 Nov 23, 2021
First steps with Python in Life Sciences

First steps with Python in Life Sciences This course material is part of the "First Steps with Python in Life Science" three-day course of SIB-trainin

SIB Swiss Institute of Bioinformatics 22 Jan 08, 2023
Airflow ETL With EKS EFS Sagemaker

Airflow ETL With EKS EFS & Sagemaker (en desarrollo) Diagrama de la solución Imp

1 Feb 14, 2022
A crude Hy handle on Pandas library

Quickstart Hyenas is a curde Hy handle written on top of Pandas API to allow for more elegant access to data-scientist's powerhouse that is Pandas. In

Peter Výboch 4 Sep 05, 2022
Conduits - A Declarative Pipelining Tool For Pandas

Conduits - A Declarative Pipelining Tool For Pandas Traditional tools for declaring pipelines in Python suck. They are mostly imperative, and can some

Kale Miller 7 Nov 21, 2021
Performance analysis of predictive (alpha) stock factors

Alphalens Alphalens is a Python Library for performance analysis of predictive (alpha) stock factors. Alphalens works great with the Zipline open sour

Quantopian, Inc. 2.5k Jan 09, 2023
Additional tools for particle accelerator data analysis and machine information

PyLHC Tools This package is a collection of useful scripts and tools for the Optics Measurements and Corrections group (OMC) at CERN. Documentation Au

PyLHC 3 Apr 13, 2022
InDels analysis of CRISPR lines by NGS amplicon sequencing technology for a multicopy gene family.

CRISPRanalysis InDels analysis of CRISPR lines by NGS amplicon sequencing technology for a multicopy gene family. In this work, we present a workflow

2 Jan 31, 2022
API>local_db>AWS_RDS - Disclaimer! All data used is for educational purposes only.

APIlocal_dbAWS_RDS Disclaimer! All data used is for educational purposes only. ETL pipeline diagram. Aim of project By creating a fully working pipe

0 Apr 25, 2022
A multi-platform GUI for bit-based analysis, processing, and visualization

A multi-platform GUI for bit-based analysis, processing, and visualization

Mahlet 529 Dec 19, 2022
EOD Historical Data Python Library (Unofficial)

EOD Historical Data Python Library (Unofficial) https://eodhistoricaldata.com Installation python3 -m pip install eodhistoricaldata Note Demo API key

Michael Whittle 20 Dec 22, 2022
TextDescriptives - A Python library for calculating a large variety of statistics from text

A Python library for calculating a large variety of statistics from text(s) using spaCy v.3 pipeline components and extensions. TextDescriptives can be used to calculate several descriptive statistic

150 Dec 30, 2022
Predictive Modeling & Analytics on Home Equity Line of Credit

Predictive Modeling & Analytics on Home Equity Line of Credit Data (Python) HMEQ Data Set In this assignment we will use Python to examine a data set

Dhaval Patel 1 Jan 09, 2022
Picka: A Python module for data generation and randomization.

Picka: A Python module for data generation and randomization. Author: Anthony Long Version: 1.0.1 - Fixed the broken image stuff. Whoops What is Picka

Anthony 108 Nov 30, 2021
BinTuner is a cost-efficient auto-tuning framework, which can deliver a near-optimal binary code that reveals much more differences than -Ox settings.

BinTuner is a cost-efficient auto-tuning framework, which can deliver a near-optimal binary code that reveals much more differences than -Ox settings. it also can assist the binary code analysis rese

BinTuner 42 Dec 16, 2022
Galvanalyser is a system for automatically storing data generated by battery cycling machines in a database

Galvanalyser is a system for automatically storing data generated by battery cycling machines in a database, using a set of "harvesters", whose job it

Battery Intelligence Lab 20 Sep 28, 2022