Pytorch implementation for our ICCV 2021 paper "TRAR: Routing the Attention Spans in Transformers for Visual Question Answering".

Overview

TRAnsformer Routing Networks (TRAR)

This is an official implementation for ICCV 2021 paper "TRAR: Routing the Attention Spans in Transformers for Visual Question Answering". It currently includes the code for training TRAR on VQA2.0 and CLEVR dataset. Our TRAR model for REC task is coming soon.

Updates

  • (2021/10/10) Release our TRAR-VQA project.
  • (2021/08/31) Release our pretrained CLEVR TRAR model on train split: TRAR CLEVR Pretrained Models.
  • (2021/08/18) Release our pretrained TRAR model on train+val split and train+val+vg split: VQA-v2 TRAR Pretrained Models
  • (2021/08/16) Release our train2014, val2014 and test2015 data. Please check our dataset setup page DATA.md for more details.
  • (2021/08/15) Release our pretrained weight on train split. Please check our model page MODEL.md for more details.
  • (2021/08/13) The project page for TRAR is avaliable.

Introduction

TRAR vs Standard Transformer

TRAR Overall

Table of Contents

  1. Installation
  2. Dataset setup
  3. Config Introduction
  4. Training
  5. Validation and Testing
  6. Models

Installation

  • Clone this repo
git clone https://github.com/rentainhe/TRAR-VQA.git
cd TRAR-VQA
  • Create a conda virtual environment and activate it
conda create -n trar python=3.7 -y
conda activate trar
conda install pytorch==1.7.1 torchvision==0.8.2 cudatoolkit=10.1 -c pytorch
  • Install Spacy and initialize the GloVe as follows:
pip install -r requirements.txt
wget https://github.com/explosion/spacy-models/releases/download/en_vectors_web_lg-2.1.0/en_vectors_web_lg-2.1.0.tar.gz -O en_vectors_web_lg-2.1.0.tar.gz
pip install en_vectors_web_lg-2.1.0.tar.gz

Dataset setup

see DATA.md

Config Introduction

In trar.yml config we have these specific settings for TRAR model

ORDERS: [0, 1, 2, 3]
IMG_SCALE: 8 
ROUTING: 'hard' # {'soft', 'hard'}
POOLING: 'attention' # {'attention', 'avg', 'fc'}
TAU_POLICY: 1 # {0: 'SLOW', 1: 'FAST', 2: 'FINETUNE'}
TAU_MAX: 10
TAU_MIN: 0.1
BINARIZE: False
  • ORDERS=list, to set the local attention window size for routing.0 for global attention.
  • IMG_SCALE=int, which should be equal to the image feature size used for training. You should set IMG_SCALE: 16 for 16 × 16 training features.
  • ROUTING={'hard', 'soft'}, to set the Routing Block Type in TRAR model.
  • POOLING={'attention', 'avg', 'fc}, to set the Downsample Strategy used in Routing Block.
  • TAU_POLICY={0, 1, 2}, to set the temperature schedule in training TRAR when using ROUTING: 'hard'.
  • TAU_MAX=float, to set the maximum temperature in training.
  • TAU_MIN=float, to set the minimum temperature in training.
  • BINARIZE=bool, binarize the predicted alphas (alphas: the prob of choosing one path), which means during test time, we only keep the maximum alpha and set others to zero. If BINARIZE=False, it will keep all of the alphas and get a weight sum of different routing predict result by alphas. It won't influence the training time, just a small difference during test time.

Note that please set BINARIZE=False when ROUTING='soft', it's no need to binarize the path prob in soft routing block.

TAU_POLICY visualization

For MAX_EPOCH=13 with WARMUP_EPOCH=3 we have the following policy strategy:

Training

Train model on VQA-v2 with default hyperparameters:

python3 run.py --RUN='train' --DATASET='vqa' --MODEL='trar'

and the training log will be seved to:

results/log/log_run_
   
    .txt

   

Args:

  • --DATASET={'vqa', 'clevr'} to choose the task for training
  • --GPU=str, e.g. --GPU='2' to train model on specific GPU device.
  • --SPLIT={'train', 'train+val', train+val+vg'}, which combines different training datasets. The default training split is train.
  • --MAX_EPOCH=int to set the total training epoch number.

Resume Training

Resume training from specific saved model weights

python3 run.py --RUN='train' --DATASET='vqa' --MODEL='trar' --RESUME=True --CKPT_V=str --CKPT_E=int
  • --CKPT_V=str: the specific checkpoint version
  • --CKPT_E=int: the resumed epoch number

Multi-GPU Training and Gradient Accumulation

  1. Multi-GPU Training: Add --GPU='0, 1, 2, 3...' after the training scripts.
python3 run.py --RUN='train' --DATASET='vqa' --MODEL='trar' --GPU='0,1,2,3'

The batch size on each GPU will be divided into BATCH_SIZE/GPUs automatically.

  1. Gradient Accumulation: Add --ACCU=n after the training scripts
python3 run.py --RUN='train' --DATASET='vqa' --MODEL='trar' --ACCU=2

This makes the optimizer accumulate gradients for n mini-batches and update the model weights once. BATCH_SIZE should be divided by n.

Validation and Testing

Warning: The args --MODEL and --DATASET should be set to the same values as those in the training stage.

Validate on Local Machine Offline evaluation only support the evaluations on the coco_2014_val dataset now.

  1. Use saved checkpoint
python3 run.py --RUN='val' --MODEL='trar' --DATASET='{vqa, clevr}' --CKPT_V=str --CKPT_E=int
  1. Use the absolute path
python3 run.py --RUN='val' --MODEL='trar' --DATASET='{vqa, clevr}' --CKPT_PATH=str

Online Testing All the evaluations on the test dataset of VQA-v2 and CLEVR benchmarks can be achieved as follows:

python3 run.py --RUN='test' --MODEL='trar' --DATASET='{vqa, clevr}' --CKPT_V=str --CKPT_E=int

Result file are saved at:

results/result_test/result_run_ _ .json

You can upload the obtained result json file to Eval AI to evaluate the scores.

Models

Here we provide our pretrained model and log, please see MODEL.md

Acknowledgements

Citation

if TRAR is helpful for your research or you wish to refer the baseline results published here, we'd really appreciate it if you could cite this paper:

@InProceedings{Zhou_2021_ICCV,
    author    = {Zhou, Yiyi and Ren, Tianhe and Zhu, Chaoyang and Sun, Xiaoshuai and Liu, Jianzhuang and Ding, Xinghao and Xu, Mingliang and Ji, Rongrong},
    title     = {TRAR: Routing the Attention Spans in Transformer for Visual Question Answering},
    booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
    month     = {October},
    year      = {2021},
    pages     = {2074-2084}
}
You might also like...
Official implementation of the paper Vision Transformer with Progressive Sampling, ICCV 2021.
Official implementation of the paper Vision Transformer with Progressive Sampling, ICCV 2021.

Vision Transformer with Progressive Sampling This is the official implementation of the paper Vision Transformer with Progressive Sampling, ICCV 2021.

 Official implementation of the ICCV 2021 paper
Official implementation of the ICCV 2021 paper "Conditional DETR for Fast Training Convergence".

The DETR approach applies the transformer encoder and decoder architecture to object detection and achieves promising performance. In this paper, we handle the critical issue, slow training convergence, and present a conditional cross-attention mechanism for fast DETR training. Our approach is motivated by that the cross-attention in DETR relies highly on the content embeddings and that the spatial embeddings make minor contributions, increasing the need for high-quality content embeddings and thus increasing the training difficulty.

The Official Implementation of the ICCV-2021 Paper: Semantically Coherent Out-of-Distribution Detection.
The Official Implementation of the ICCV-2021 Paper: Semantically Coherent Out-of-Distribution Detection.

SCOOD-UDG (ICCV 2021) This repository is the official implementation of the paper: Semantically Coherent Out-of-Distribution Detection Jingkang Yang,

Official implementation of the ICCV 2021 paper:
Official implementation of the ICCV 2021 paper: "The Power of Points for Modeling Humans in Clothing".

The Power of Points for Modeling Humans in Clothing (ICCV 2021) This repository contains the official PyTorch implementation of the ICCV 2021 paper: T

Official implementation of the ICCV 2021 paper
Official implementation of the ICCV 2021 paper "Joint Inductive and Transductive Learning for Video Object Segmentation"

JOINT This is the official implementation of Joint Inductive and Transductive learning for Video Object Segmentation, to appear in ICCV 2021. @inproce

Implementation for paper "STAR: A Structure-aware Lightweight Transformer for Real-time Image Enhancement" (ICCV 2021).

STAR-pytorch Implementation for paper "STAR: A Structure-aware Lightweight Transformer for Real-time Image Enhancement" (ICCV 2021). CVF (pdf) STAR-DC

PyTorch implementations for our SIGGRAPH 2021 paper: Editable Free-viewpoint Video Using a Layered Neural Representation.
PyTorch implementations for our SIGGRAPH 2021 paper: Editable Free-viewpoint Video Using a Layered Neural Representation.

st-nerf We provide PyTorch implementations for our paper: Editable Free-viewpoint Video Using a Layered Neural Representation SIGGRAPH 2021 Jiakai Zha

An official implementation of "Exploiting a Joint Embedding Space for Generalized Zero-Shot Semantic Segmentation" (ICCV 2021) in PyTorch.

Exploiting a Joint Embedding Space for Generalized Zero-Shot Semantic Segmentation This is an official implementation of the paper "Exploiting a Joint

[ICCV 2021]  Official Pytorch implementation for Discriminative Region-based Multi-Label Zero-Shot Learning SOTA results on NUS-WIDE and OpenImages
[ICCV 2021] Official Pytorch implementation for Discriminative Region-based Multi-Label Zero-Shot Learning SOTA results on NUS-WIDE and OpenImages

Discriminative Region-based Multi-Label Zero-Shot Learning (ICCV 2021) [arXiv][Project page coming soon] Sanath Narayan*, Akshita Gupta*, Salman Kh

Comments
  • Could the authors provide REC code?

    Could the authors provide REC code?

    Hello,

    I am very interested in your work. I noticed that the authors have conducted experiments on REC datasets (RefCOCO, RefCOCO+, RefCOCOg).However, I only find the code about VQA datasets (VQA2.0 and CLEVR), could you provide this code of this part?

    Thank you!

    opened by QiuHeqian 5
  • 求助TRAR相关的问题

    求助TRAR相关的问题

    尊敬的TRAR作者,您好,我最近也在训练TRAR模型,在超参数基本同您一致的情况下,采用了您仓库中所提供的 8x8 Grid features数据集,经过多次训练,我的模型准确度大概在71.5%(VQA2.0)左右,达不到您在文中所提出的为72%, 另外,我也加载了您所提供的train+val+vg->test预训练模型参数,并在这个数据集上只能跑到70.6%(VQA2.0),综上,请问是因为这个8x8网格特征的问题吗?或者还是其他原因? 期待您的答复,谢谢。

    opened by MissionAbort 3
Releases(v1.0.0)
Owner
Ren Tianhe
Ren Tianhe
CVPR 2021 Official Pytorch Code for UC2: Universal Cross-lingual Cross-modal Vision-and-Language Pre-training

UC2 UC2: Universal Cross-lingual Cross-modal Vision-and-Language Pre-training Mingyang Zhou, Luowei Zhou, Shuohang Wang, Yu Cheng, Linjie Li, Zhou Yu,

Mingyang Zhou 28 Dec 30, 2022
A scikit-learn-compatible module for estimating prediction intervals.

|Anaconda|_ MAPIE - Model Agnostic Prediction Interval Estimator MAPIE allows you to easily estimate prediction intervals using your favourite sklearn

SimAI 584 Dec 27, 2022
Python Actor concurrency library

Thespian Actor Library This library provides the framework of an Actor model for use by applications implementing Actors. Thespian Site with Documenta

Kevin Quick 177 Dec 11, 2022
This source code is implemented using keras library based on "Automatic ocular artifacts removal in EEG using deep learning"

CSP_Deep_EEG This source code is implemented using keras library based on "Automatic ocular artifacts removal in EEG using deep learning" {https://www

Seyed Mahdi Roostaiyan 2 Nov 08, 2022
Weakly Supervised Learning of Rigid 3D Scene Flow

Weakly Supervised Learning of Rigid 3D Scene Flow This repository provides code and data to train and evaluate a weakly supervised method for rigid 3D

Zan Gojcic 124 Dec 27, 2022
An imperfect information game is a type of game with asymmetric information

DecisionHoldem An imperfect information game is a type of game with asymmetric information. Compared with perfect information game, imperfect informat

Decision AI 25 Dec 23, 2022
keyframes-CNN-RNN(action recognition)

keyframes-CNN-RNN(action recognition) Environment: python=3.7 pytorch=1.2 Datasets: Following the format of UCF101 action recognition. Run steps: Mo

4 Feb 09, 2022
MAterial del programa Misión TIC 2022

Mision TIC 2022 Esta iniciativa, aparece como respuesta frente a los retos de la Cuarta Revolución Industrial, y tiene como objetivo la formación de 1

6 May 25, 2022
Air Quality Prediction Using LSTM

AirQualityPredictionUsingLSTM In this Repo, i present to you the winning solution of smart gujarat hackathon 2019 where the task was to predict the qu

Deepak Nandwani 2 Dec 13, 2022
Trax — Deep Learning with Clear Code and Speed

Trax — Deep Learning with Clear Code and Speed Trax is an end-to-end library for deep learning that focuses on clear code and speed. It is actively us

Google 7.3k Dec 26, 2022
Individual Treatment Effect Estimation

CAPE Individual Treatment Effect Estimation Run CAPE python train_causal.py --loop 10 -m cape_cau -d NI --i_t 1 Run a baseline model python train_cau

S. Deng 4 Sep 02, 2022
Python and C++ implementation of "MarkerPose: Robust real-time planar target tracking for accurate stereo pose estimation". Accepted at LXCV @ CVPR 2021.

MarkerPose: Robust real-time planar target tracking for accurate stereo pose estimation This is a PyTorch and LibTorch implementation of MarkerPose: a

Jhacson Meza 47 Nov 18, 2022
LUKE -- Language Understanding with Knowledge-based Embeddings

LUKE (Language Understanding with Knowledge-based Embeddings) is a new pre-trained contextualized representation of words and entities based on transf

Studio Ousia 587 Dec 30, 2022
Python TFLite scripts for detecting objects of any class in an image without knowing their label.

Python TFLite scripts for detecting objects of any class in an image without knowing their label.

Ibai Gorordo 42 Oct 07, 2022
Point Cloud Registration Network

PCRNet: Point Cloud Registration Network using PointNet Encoding Source Code Author: Vinit Sarode and Xueqian Li Paper | Website | Video | Pytorch Imp

ViNiT SaRoDe 59 Nov 19, 2022
CondenseNet: Light weighted CNN for mobile devices

CondenseNets This repository contains the code (in PyTorch) for "CondenseNet: An Efficient DenseNet using Learned Group Convolutions" paper by Gao Hua

Shichen Liu 690 Nov 30, 2022
Computer Vision is an elective course of MSAI, SCSE, NTU, Singapore

[AI6122] Computer Vision is an elective course of MSAI, SCSE, NTU, Singapore. The repository corresponds to the AI6122 of Semester 1, AY2021-2022, starting from 08/2021. The instructor of this course

HT. Li 5 Sep 12, 2022
Face Transformer for Recognition

Face-Transformer This is the code of Face Transformer for Recognition (https://arxiv.org/abs/2103.14803v2). Recently there has been great interests of

Zhong Yaoyao 153 Nov 30, 2022
Nsdf: A mesh SDF with just some code we can directly paste into our raymarcher

nsdf Representing SDFs of arbitrary meshes has been a bit tricky so far. Express

Jan Ivanecky 5 Feb 18, 2022
A multi-entity Transformer for multi-agent spatiotemporal modeling.

baller2vec This is the repository for the paper: Michael A. Alcorn and Anh Nguyen. baller2vec: A Multi-Entity Transformer For Multi-Agent Spatiotempor

Michael A. Alcorn 56 Nov 15, 2022