Learning Spatio-Temporal Transformer for Visual Tracking

Related tags

Deep LearningStark
Overview

STARK

PWC
PWC
PWC

The official implementation of the paper Learning Spatio-Temporal Transformer for Visual Tracking

Hiring research interns for visual transformer projects: [email protected]

STARK_Framework

Highlights

End-to-End, Post-processing Free

STARK is an end-to-end tracking approach, which directly predicts one accurate bounding box as the tracking result.
Besides, STARK does not use any hyperparameters-sensitive post-processing, leading to stable performances.

Real-Time Speed

STARK-ST50 and STARK-ST101 run at 40FPS and 30FPS respectively on a Tesla V100 GPU.

Strong performance

Tracker LaSOT (AUC) GOT-10K (AO) TrackingNet (AUC)
STARK 67.1 68.8 82.0
TransT 64.9 67.1 81.4
TrDiMP 63.7 67.1 78.4
Siam R-CNN 64.8 64.9 81.2

Purely PyTorch-based Code

STARK is implemented purely based on the PyTorch.

Install the environment

Option1: Use the Anaconda

conda create -n stark python=3.6
conda activate stark
bash install.sh

Option2: Use the docker file

We provide the complete docker at here

Data Preparation

Put the tracking datasets in ./data. It should look like:

${STARK_ROOT}
 -- data
     -- lasot
         |-- airplane
         |-- basketball
         |-- bear
         ...
     -- got10k
         |-- test
         |-- train
         |-- val
     -- coco
         |-- annotations
         |-- images
     -- trackingnet
         |-- TRAIN_0
         |-- TRAIN_1
         ...
         |-- TRAIN_11
         |-- TEST

Run the following command to set paths for this project

python tracking/create_default_local_file.py --workspace_dir . --data_dir ./data --save_dir .

After running this command, you can also modify paths by editing these two files

lib/train/admin/local.py  # paths about training
lib/test/evaluation/local.py  # paths about testing

Train STARK

Training with multiple GPUs using DDP

# STARK-S50
python tracking/train.py --script stark_s --config baseline --save_dir . --mode multiple --nproc_per_node 8  # STARK-S50
# STARK-ST50
python tracking/train.py --script stark_st1 --config baseline --save_dir . --mode multiple --nproc_per_node 8  # STARK-ST50 Stage1
python tracking/train.py --script stark_st2 --config baseline --save_dir . --mode multiple --nproc_per_node 8 --script_prv stark_st1 --config_prv baseline  # STARK-ST50 Stage2
# STARK-ST101
python tracking/train.py --script stark_st1 --config baseline_R101 --save_dir . --mode multiple --nproc_per_node 8  # STARK-ST101 Stage1
python tracking/train.py --script stark_st2 --config baseline_R101 --save_dir . --mode multiple --nproc_per_node 8 --script_prv stark_st1 --config_prv baseline_R101  # STARK-ST101 Stage2

(Optionally) Debugging training with a single GPU

python tracking/train.py --script stark_s --config baseline --save_dir . --mode single

Test and evaluate STARK on benchmarks

  • LaSOT
python tracking/test.py stark_st baseline --dataset lasot --threads 32
python tracking/analysis_results.py # need to modify tracker configs and names
  • GOT10K-test
python tracking/test.py stark_st baseline_got10k_only --dataset got10k_test --threads 32
python lib/test/utils/transform_got10k.py --tracker_name stark_st --cfg_name baseline_got10k_only
  • TrackingNet
python tracking/test.py stark_st baseline --dataset trackingnet --threads 32
python lib/test/utils/transform_trackingnet.py --tracker_name stark_st --cfg_name baseline
  • VOT2020
    Before evaluating "STARK+AR" on VOT2020, please install some extra packages following external/AR/README.md
cd external/vot20/<workspace_dir>
export PYTHONPATH=<path to the stark project>:$PYTHONPATH
bash exp.sh
  • VOT2020-LT
cd external/vot20_lt/<workspace_dir>
export PYTHONPATH=<path to the stark project>:$PYTHONPATH
bash exp.sh

Test FLOPs, Params, and Speed

# Profiling STARK-S50 model
python tracking/profile_model.py --script stark_s --config baseline
# Profiling STARK-ST50 model
python tracking/profile_model.py --script stark_st2 --config baseline
# Profiling STARK-ST101 model
python tracking/profile_model.py --script stark_st2 --config baseline_R101

Model Zoo

The trained models, the training logs, and the raw tracking results are provided in the model zoo

Acknowledgments

Owner
Multimedia Research
Multimedia Research at Microsoft Research Asia
Multimedia Research
ICLR 2021, Fair Mixup: Fairness via Interpolation

Fair Mixup: Fairness via Interpolation Training classifiers under fairness constraints such as group fairness, regularizes the disparities of predicti

Ching-Yao Chuang 49 Nov 22, 2022
CRISCE: Automatically Generating Critical Driving Scenarios From Car Accident Sketches

CRISCE: Automatically Generating Critical Driving Scenarios From Car Accident Sketches This document describes how to install and use CRISCE (CRItical

Chair of Software Engineering II, Uni Passau 2 Feb 09, 2022
Basit bir burç modülü.

Bu modulu burclar hakkinda gundelik bir sekilde bilgi alin diye yaptim ve sizler icin kullanima sunuyorum. Modulun kullanimi asiri basit: Ornek Kullan

Special 17 Jun 08, 2022
[CVPR 2021] Few-shot 3D Point Cloud Semantic Segmentation

Few-shot 3D Point Cloud Semantic Segmentation Created by Na Zhao from National University of Singapore Introduction This repository contains the PyTor

117 Dec 27, 2022
Simple Text-Generator with OpenAI gpt-2 Pytorch Implementation

GPT2-Pytorch with Text-Generator Better Language Models and Their Implications Our model, called GPT-2 (a successor to GPT), was trained simply to pre

Tae-Hwan Jung 775 Jan 08, 2023
This repository accompanies the ACM TOIS paper "What can I cook with these ingredients?" - Understanding cooking-related information needs in conversational search

In this repository you find data that has been gathered when conducting in-situ experiments in a conversational cooking setting. These data include tr

6 Sep 22, 2022
A Physics-based Noise Formation Model for Extreme Low-light Raw Denoising (CVPR 2020 Oral & TPAMI 2021)

ELD The implementation of CVPR 2020 (Oral) paper "A Physics-based Noise Formation Model for Extreme Low-light Raw Denoising" and its journal (TPAMI) v

Kaixuan Wei 359 Jan 01, 2023
CS50's Introduction to Artificial Intelligence Test Scripts

CS50's Introduction to Artificial Intelligence Test Scripts 🤷‍♂️ What's this? 🤷‍♀️ This repository contains Python scripts to automate tests for mos

Jet Kan 2 Dec 28, 2022
This is the repository for paper NEEDLE: Towards Non-invertible Backdoor Attack to Deep Learning Models.

This is the repository for paper NEEDLE: Towards Non-invertible Backdoor Attack to Deep Learning Models.

1 Oct 25, 2021
HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis

HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis Jungil Kong, Jaehyeon Kim, Jaekyoung Bae In our paper, we p

Rishikesh (ऋषिकेश) 31 Dec 08, 2022
Use .csv files to record, play and evaluate motion capture data.

Purpose These scripts allow you to record mocap data to, and play from .csv files. This approach facilitates parsing of body movement data in statisti

21 Dec 12, 2022
Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising

Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising

Kai Zhang 1.2k Dec 29, 2022
(SIGIR2020) “Asymmetric Tri-training for Debiasing Missing-Not-At-Random Explicit Feedback’’

Asymmetric Tri-training for Debiasing Missing-Not-At-Random Explicit Feedback About This repository accompanies the real-world experiments conducted i

yuta-saito 19 Dec 01, 2022
The description of FMFCC-A (audio track of FMFCC) dataset and Challenge resluts.

FMFCC-A This project is the description of FMFCC-A (audio track of FMFCC) dataset and Challenge resluts. The FMFCC-A dataset is shared through BaiduCl

18 Dec 24, 2022
Python Actor concurrency library

Thespian Actor Library This library provides the framework of an Actor model for use by applications implementing Actors. Thespian Site with Documenta

Kevin Quick 177 Dec 11, 2022
Small repo describing how to use Hugging Face's Wav2Vec2 with PyCTCDecode

🤗 Transformers Wav2Vec2 + PyCTCDecode Introduction This repo shows how 🤗 Transformers can be used in combination with kensho-technologies's PyCTCDec

Patrick von Platen 102 Oct 22, 2022
This repository contains the code needed to train Mega-NeRF models and generate the sparse voxel octrees

Mega-NeRF This repository contains the code needed to train Mega-NeRF models and generate the sparse voxel octrees used by the Mega-NeRF-Dynamic viewe

cmusatyalab 260 Dec 28, 2022
Monocular 3D Object Detection: An Extrinsic Parameter Free Approach (CVPR2021)

Monocular 3D Object Detection: An Extrinsic Parameter Free Approach (CVPR2021) Yunsong Zhou, Yuan He, Hongzi Zhu, Cheng Wang, Hongyang Li, Qinhong Jia

Yunsong Zhou 51 Dec 14, 2022
CVPR 2021 - Official code repository for the paper: On Self-Contact and Human Pose.

TUCH This repo is part of our project: On Self-Contact and Human Pose. [Project Page] [Paper] [MPI Project Page] License Software Copyright License fo

Lea Müller 45 Jan 07, 2023
SCU OlympicsRunning Baseline

Competition 1v1 running Environment check details in Jidi Competition RLChina2021智能体竞赛 做出的修改: 奖励重塑:修改了环境,重新设置了奖励的分配,使得奖励组成不只有零和博弈,还有探索环境的奖励。 算法微调:修改了官

ZiSeoi Wong 2 Nov 23, 2021