monolish: MONOlithic Liner equation Solvers for Highly-parallel architecture

Overview

monolish: MONOlithic LIner equation Solvers for Highly-parallel architecture

monolish is a linear equation solver library that monolithically fuses variable data type, matrix structures, matrix data format, vendor specific data transfer APIs, and vendor specific numerical algebra libraries.


monolish let developer forget about:

  • Performance tuning
  • Processor differences which execute library (Intel CPU, NVIDIA GPU, AMD CPU, ARM CPU, NEC SX-Aurora TSUBASA, etc.)
  • Vendor specific data transfer APIs (host RAM to Device RAM)
  • Finding bottlenecks and performance benchmarks
  • The argument data type of matrix/vector operations
  • Matrix structures and storage formats
  • Cumbersome package dependency

License

Copyright 2021 RICOS Co. Ltd.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.

Comments
  • It seems that the `Dense(M, N, min, max)` constructor is not completely random.

    It seems that the `Dense(M, N, min, max)` constructor is not completely random.

    Running the following simple program

    #include <iostream>
    #include <monolish_blas.hpp>
    
    int main() {
      monolish::matrix::Dense<double>x(2, 3, 0.0, 10.0);
      x.print_all();
      return 0;
    }
    
    $ g++ -O3 main.cpp -o main.out -lmonolish_cpu
    

    will produce results like this.

    [email protected]:/$ ./main.out
    1 1 5.27196
    1 2 2.82358 <--
    1 3 2.13893 <--
    2 1 9.72054
    2 2 2.82358 <--
    2 3 2.13893 <--
    [email protected]:/$ ./main.out
    1 1 5.3061
    1 2 9.75236
    1 3 7.15652
    2 1 5.28961
    2 2 2.05967
    2 3 0.59838
    [email protected]:/$ ./main.out
    1 1 9.33149 <--
    1 2 4.75639 <--
    1 3 8.71093 <--
    2 1 9.33149 <--
    2 2 4.75639 <--
    2 3 8.71093 <--
    

    The arrows (<--) indicate that the number is repeating.

    This is probably due to that the pseudo-random number generator does not split well when it is parallelized by OpenMP.

    https://github.com/ricosjp/monolish/blob/1b89942e869b7d0acd2d82b4c47baeba2fbdf3e6/src/utils/dense_constructor.cpp#L120-L127

    This may happen not only with Dense, but also with random constructors of other data structures.

    I tested this on docker image ghcr.io/ricosjp/monolish/mkl:0.14.1.

    opened by lotz84 5
  • impl. transpose matvec, matmul

    impl. transpose matvec, matmul

    I want to give modern and intuitive transposition information. But I have no idea how to implement it easily.

    First, we create the following function as a prototype

    matmul(A,B,C) // C=AB
    matmul_TNN(A, B, C); // C=A^TB
    matvec(A,x,y); // y = Ax
    matvec_T(A, x, y); // y=A^Tx
    

    This interface is not beautiful. However, it has the following advantages

    • It does not affect other functions.
    • Easy to trace with logger
    • Simple to implement FFI in the future.
    • When beautiful ideas appear in the future, these functions can be implemented wrapping it.
    opened by t-hishinuma 2
  • try -fopenmp-cuda-mode flag

    try -fopenmp-cuda-mode flag

    memo:

    Clang supports two data-sharing models for Cuda devices: Generic and Cuda modes. The default mode is Generic. Cuda mode can give an additional performance and can be activated using the -fopenmp-cuda-mode flag. In Generic mode all local variables that can be shared in the parallel regions are stored in the global memory. In Cuda mode local variables are not shared between the threads and it is user responsibility to share the required data between the threads in the parallel regions.

    https://clang.llvm.org/docs/OpenMPSupport.html#basic-support-for-cuda-devices

    opened by t-hishinuma 2
  • Reserch the effect of the level information of the performance of cusparse ILU precondition

    Reserch the effect of the level information of the performance of cusparse ILU precondition

    The level information may not improve the performance but spend extra time doing analysis. For example, a tridiagonal matrix has no parallelism. In this case, CUSPARSE_SOLVE_POLICY_NO_LEVEL performs better than CUSPARSE_SOLVE_POLICY_USE_LEVEL. If the user has an iterative solver, the best approach is to do csrsv2_analysis() with CUSPARSE_SOLVE_POLICY_USE_LEVEL once. Then do csrsv2_solve() with CUSPARSE_SOLVE_POLICY_NO_LEVEL in the first run and with CUSPARSE_SOLVE_POLICY_USE_LEVEL in the second run, picking faster one to perform the remaining iterations.

    https://docs.nvidia.com/cuda/cusparse/index.html#csric02

    opened by t-hishinuma 2
  •  ignoring return value in test

    ignoring return value in test

    matrix_transpose.cpp:60:3: warning: ignoring return value of 'monolish::matrix::COO<Float>& monolish::matrix::COO<Float>::transpose() [with Float = double]', declared with attribute nodiscard [-Wunused-result]
       60 |   A.transpose();
    
    opened by t-hishinuma 2
  • Automatic deploy at release

    Automatic deploy at release

    impl. in github actions

    • [x] generate Doxyben (need to chenge version name)
    • [x] generate deb file
    • [x] generate monolish docker

    need to get version number...

    opened by t-hishinuma 2
  • write how to install nvidia-docker

    write how to install nvidia-docker

    distribution=$(. /etc/os-release;echo $ID$VERSION_ID)
    curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | sudo apt-key add -
    curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.list | sudo tee > /etc/apt/sources.list.d/nvidia-docker.list
    sudo apt update -y
    sudo apt install -y nvidia-docker2
    sudo systemctl restart docker
    
    opened by t-hishinuma 1
  • Resolve conflict of libmonolish-cpu and libmonolish-nvidia-gpu deb package

    Resolve conflict of libmonolish-cpu and libmonolish-nvidia-gpu deb package

    What conflicts?

    libomp.so is contained in both package

    How to resolve?

    • (a) Use libomp5-12 distributed by ubuntu
    • (b) Create another package of libomp in allgebra stage (libomp-allgebra)
    opened by termoshtt 1
  • resolve curse of type name in src/

    resolve curse of type name in src/

    In src/, int and size_t are written. When change the class or function declarations in include/, I don't want to rewrite src/. Use auto or decltype() to remove them.

    opened by t-hishinuma 1
  • LLVM OpenMP Offloading can be installed by apt?

    LLVM OpenMP Offloading can be installed by apt?

    docker run -it --gpus all -v $PWD:/work nvidia/cuda:11.7.0-devel-ubuntu22.04
    ==
    apt update -y
    apt install -y git intel-mkl cmake ninja-build ccache clang clang-tools libomp-14-dev gcc gfortran
    git config --global --add safe.directory /work
    cd /work; make gpu
    

    pass??

    opened by t-hishinuma 0
  • cusparse IC / ILU functions is deprecated

    cusparse IC / ILU functions is deprecated

    but, sample code of cusparse is not updated

    https://docs.nvidia.com/cuda/cusparse/index.html#csric02

    I dont like trial and error, so wait for the sample code to be updated.

    opened by t-hishinuma 0
Releases(0.17.0)
Owner
RICOS Co. Ltd.
株式会社科学計算総合研究所 / Research Institute for Computational Science Co. Ltd.
RICOS Co. Ltd.
Kaggler is a Python package for lightweight online machine learning algorithms and utility functions for ETL and data analysis.

Kaggler is a Python package for lightweight online machine learning algorithms and utility functions for ETL and data analysis. It is distributed under the MIT License.

Jeong-Yoon Lee 720 Dec 25, 2022
Bayesian Modeling and Computation in Python

Bayesian Modeling and Computation in Python Open access and Code This repository contains the open access version of the text and the code examples in

Bayesian Modeling and Computation in Python 339 Jan 02, 2023
🤖 ⚡ scikit-learn tips

🤖 ⚡ scikit-learn tips New tips are posted on LinkedIn, Twitter, and Facebook. 👉 Sign up to receive 2 video tips by email every week! 👈 List of all

Kevin Markham 1.6k Jan 03, 2023
Land Cover Classification Random Forest

You can perform Land Cover Classification on Satellite Images using Random Forest and visualize the result using Earthpy package. Make sure to install the required packages and such as

Dr. Sander Ali Khowaja 1 Jan 21, 2022
AutoX是一个高效的自动化机器学习工具,它主要针对于表格类型的数据挖掘竞赛。 它的特点包括: 效果出色、简单易用、通用、自动化、灵活。

English | 简体中文 AutoX是什么? AutoX一个高效的自动化机器学习工具,它主要针对于表格类型的数据挖掘竞赛。 它的特点包括: 效果出色: AutoX在多个kaggle数据集上,效果显著优于其他解决方案(见效果对比)。 简单易用: AutoX的接口和sklearn类似,方便上手使用。

4Paradigm 431 Dec 28, 2022
A Lightweight Hyperparameter Optimization Tool 🚀

The mle-hyperopt package provides a simple and intuitive API for hyperparameter optimization of your Machine Learning Experiment (MLE) pipeline.

Robert Lange 137 Dec 02, 2022
ML-powered Loan-Marketer Customer Filtering Engine

In Loan-Marketing business employees are required to call the user's to buy loans of several fields and in several magnitudes. If employees are calling everybody in the network it is also very length

Sagnik Roy 13 Jul 02, 2022
Optimal Randomized Canonical Correlation Analysis

ORCCA Optimal Randomized Canonical Correlation Analysis This project is for the python version of ORCCA algorithm. It depends on Numpy for matrix calc

Yinsong Wang 1 Nov 21, 2021
LiuAlgoTrader is a scalable, multi-process ML-ready framework for effective algorithmic trading

LiuAlgoTrader is a scalable, multi-process ML-ready framework for effective algorithmic trading. The framework simplify development, testing, deployment, analysis and training algo trading strategies

Amichay Oren 458 Dec 24, 2022
ThunderGBM: Fast GBDTs and Random Forests on GPUs

Documentations | Installation | Parameters | Python (scikit-learn) interface What's new? ThunderGBM won 2019 Best Paper Award from IEEE Transactions o

Xtra Computing Group 648 Dec 16, 2022
Learning --> Numpy January 2022 - winter'22

Numerical-Python Numpy NumPy is a library for the Python programming language, adding support for large, multi-dimensional arrays and matrices, along

Shahzaneer Ahmed 0 Mar 12, 2022
Cryptocurrency price prediction and exceptions in python

Cryptocurrency price prediction and exceptions in python This is a coursework on foundations of computing module Through this coursework i worked on m

Panagiotis Sotirellos 1 Nov 07, 2021
Learn how to responsibly deliver value with ML.

Made With ML Applied ML · MLOps · Production Join 30K+ developers in learning how to responsibly deliver value with ML. 🔥 Among the top MLOps reposit

Goku Mohandas 32k Dec 30, 2022
决策树分类与回归模型的实现和可视化

DecisionTree 决策树分类与回归模型,以及可视化 DecisionTree ID3 C4.5 CART 分类 回归 决策树绘制 分类树 回归树 调参 剪枝 ID3 ID3决策树是最朴素的决策树分类器: 无剪枝 只支持离散属性 采用信息增益准则 在data.py中,我们记录了一个小的西瓜数据

Welt Xing 10 Oct 22, 2022
SPCL 48 Dec 12, 2022
A simple application that calculates the probability distribution of a normal distribution

probability-density-function General info An application that calculates the probability density and cumulative distribution of a normal distribution

1 Oct 25, 2022
Random Forest Classification for Neural Subtypes

Random Forest classifier for neural subtypes extracted from extracellular recordings from human brain organoids.

Michael Zabolocki 1 Jan 31, 2022
Predicting Keystrokes using an Audio Side-Channel Attack and Machine Learning

Predicting Keystrokes using an Audio Side-Channel Attack and Machine Learning My

3 Apr 10, 2022
monolish: MONOlithic Liner equation Solvers for Highly-parallel architecture

monolish is a linear equation solver library that monolithically fuses variable data type, matrix structures, matrix data format, vendor specific data transfer APIs, and vendor specific numerical alg

RICOS Co. Ltd. 179 Dec 21, 2022
🚪✊Knock Knock: Get notified when your training ends with only two additional lines of code

Knock Knock A small library to get a notification when your training is complete or when it crashes during the process with two additional lines of co

Hugging Face 2.5k Jan 07, 2023