StyleGAN-NADA: CLIP-Guided Domain Adaptation of Image Generators

Overview

StyleGAN-NADA: CLIP-Guided Domain Adaptation of Image Generators

Open In Colab arXiv

[Project Website] [Replicate.ai Project]

StyleGAN-NADA: CLIP-Guided Domain Adaptation of Image Generators
Rinon Gal, Or Patashnik, Haggai Maron, Gal Chechik, Daniel Cohen-Or

Abstract:
Can a generative model be trained to produce images from a specific domain, guided by a text prompt only, without seeing any image? In other words: can an image generator be trained blindly? Leveraging the semantic power of large scale Contrastive-Language-Image-Pre-training (CLIP) models, we present a text-driven method that allows shifting a generative model to new domains, without having to collect even a single image from those domains. We show that through natural language prompts and a few minutes of training, our method can adapt a generator across a multitude of domains characterized by diverse styles and shapes. Notably, many of these modifications would be difficult or outright impossible to reach with existing methods. We conduct an extensive set of experiments and comparisons across a wide range of domains. These demonstrate the effectiveness of our approach and show that our shifted models maintain the latent-space properties that make generative models appealing for downstream tasks.

Description

This repo contains the official implementation of StyleGAN-NADA, a Non-Adversarial Domain Adaptation for image generators. At a high level, our method works using two paired generators. We initialize both using a pre-trained model (for example, FFHQ). We hold one generator constant and train the other by demanding that the direction between their generated images in clip space aligns with some given textual direction.

The following diagram illustrates the process:

We set up a colab notebook so you can play with it yourself :) Let us know if you come up with any cool results!

We've also included inversion in the notebook (using ReStyle) so you can use the paired generators to edit real images. Most edits will work well with the pSp version of ReStyle, which also allows for more accurate reconstructions. In some cases, you may need to switch to the e4e based encoder for better editing at the cost of reconstruction accuracy.

Updates

03/10/2021 (A) Interpolation video script now supports InterfaceGAN based-editing.
03/10/2021 (B) Updated the notebook with support for target style images.
03/10/2021 (C) Added replicate.ai support. You can now run inference or generate videos without needing to setup anything or work with code.
22/08/2021 Added a script for generating cross-domain interpolation videos (similar to the top video in the project page).
21/08/2021 (A) Added the ability to mimic styles from an image set. See the usage section.
21/08/2021 (B) Added dockerized UI tool.
21/08/2021 (C) Added link to drive with pre-trained models.

Generator Domain Adaptation

We provide many examples of converted generators in our project page. Here are a few samples:

Setup

The code relies on the official implementation of CLIP, and the Rosinality pytorch implementation of StyleGAN2.

Requirements

  • Anaconda
  • Pretrained StyleGAN2 generator (can be downloaded from here). You can also download a model from here and convert it with the provited script. See the colab notebook for examples.

In addition, run the following commands:

conda install --yes -c pytorch pytorch=1.7.1 torchvision cudatoolkit=<CUDA_VERSION>
pip install ftfy regex tqdm
pip install git+https://github.com/openai/CLIP.git

Usage

To convert a generator from one domain to another, use the colab notebook or run the training script in the ZSSGAN directory:

python train.py --size 1024 
                --batch 2 
                --n_sample 4 
                --output_dir /path/to/output/dir 
                --lr 0.002 
                --frozen_gen_ckpt /path/to/stylegan2-ffhq-config-f.pt 
                --iter 301 
                --source_class "photo" 
                --target_class "sketch" 
                --auto_layer_k 18
                --auto_layer_iters 1 
                --auto_layer_batch 8 
                --output_interval 50 
                --clip_models "ViT-B/32" "ViT-B/16" 
                --clip_model_weights 1.0 1.0 
                --mixing 0.0
                --save_interval 150

Where you should adjust size to match the size of the pre-trained model, and the source_class and target_class descriptions control the direction of change. For an explenation of each argument (and a few additional options), please consult ZSSGAN/options/train_options.py. For most modifications these default parameters should be good enough. See the colab notebook for more detailed directions.

21/08/2021 Instead of using source and target texts, you can now target a style represented by a few images. Simply replace the --source_class and --target_class options with:

--style_img_dir /path/to/img/dir

where the directory should contain a few images (png, jpg or jpeg) with the style you want to mimic. There is no need to normalize or preprocess the images in any form.

Some results of converting an FFHQ model using children's drawings, LSUN Cars using Dali paintings and LSUN Cat using abstract sketches:

Pre-Trained Models

We provide a Google Drive containing an assortment of models used in the paper, tweets and other locations. If you want access to a model not yet included in the drive, please let us know.

Docker

We now provide a simple dockerized interface for training models. The UI currently supports a subset of the colab options, but does not require repeated setups.

In order to use the docker version, you must have a CUDA compatible GPU and must install nvidia-docker and docker-compose first.

After cloning the repo, simply run:

cd StyleGAN-nada/
docker-compose up
  • Downloading the docker for the first time may take a few minutes.
  • While the docker is running, the UI should be available under http://localhost:8888/
  • The UI was tested using an RTX3080 GPU with 16GB of RAM. Smaller GPUs may run into memory limits with large models.

If you find the UI useful and want it expended to allow easier access to saved models, support for real image editing etc., please let us know.

Editing Video

In order to generate a cross-domain editing video (such as the one at the top of our project page), prepare a set of edited latent codes in the original domain and run the following generate_videos.py script in the ZSSGAN directory:

python generate_videos.py --ckpt /model_dir/pixar.pt             \
                                 /model_dir/ukiyoe.pt            \
                                 /model_dir/edvard_munch.pt      \
                                 /model_dir/botero.pt            \
                          --out_dir /output/video/               \
                          --source_latent /latents/latent000.npy \
                          --target_latents /latents/
  • The script relies on ffmpeg to function. On linux it can be installed by running sudo apt install ffmpeg
  • The argument to --ckpt is a list of model checkpoints used to fill the grid.
    • The number of models must be a perfect square, e.g. 1, 4, 9...
  • The argument to --target_latents can be either a directory containing a set of .npy w-space latent codes, or a list of individual files.
  • Please see the script for more details.

We provide example latent codes for the same identity used in our video. If you want to generate your own, we recommend using StyleCLIP, InterFaceGAN, StyleFlow, GANSpace or any other latent space editing method.

03/10/2021 We now provide editing directions for use in video generation. To use the built-in directions, omit the --target_latents argument. You can use specific editing directions from the available list by passing them with the --edit_directions flag. See generate_videos.py for more information.

Related Works

The concept of using CLIP to guide StyleGAN generation results was introduced in StyleCLIP (Patashnik et al.).

We invert real images into the GAN's latent space using ReStyle (Alaluf et al.).

Editing directions for video generation were taken from Anycost GAN (Lin et al.).

Citation

If you make use of our work, please cite our paper:

@misc{gal2021stylegannada,
      title={StyleGAN-NADA: CLIP-Guided Domain Adaptation of Image Generators}, 
      author={Rinon Gal and Or Patashnik and Haggai Maron and Gal Chechik and Daniel Cohen-Or},
      year={2021},
      eprint={2108.00946},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Additional examples:

Our method can be used to enable out-of-domain editing of real images, using pre-trained, off-the-shelf inversion networks. Here are a few more examples:

Benchmark datasets, data loaders, and evaluators for graph machine learning

Overview The Open Graph Benchmark (OGB) is a collection of benchmark datasets, data loaders, and evaluators for graph machine learning. Datasets cover

1.5k Jan 05, 2023
Elegy is a framework-agnostic Trainer interface for the Jax ecosystem.

Elegy Elegy is a framework-agnostic Trainer interface for the Jax ecosystem. Main Features Easy-to-use: Elegy provides a Keras-like high-level API tha

435 Dec 30, 2022
Effect of Different Encodings and Distance Functions on Quantum Instance-based Classifiers

Effect of Different Encodings and Distance Functions on Quantum Instance-based Classifiers The repository contains the code to reproduce the experimen

Alessandro Berti 4 Aug 24, 2022
A Pytorch Implementation of Domain adaptation of object detector using scissor-like networks

A Pytorch Implementation of Domain adaptation of object detector using scissor-like networks Please follow Faster R-CNN and DAF to complete the enviro

2 Oct 07, 2022
Udacity's CS101: Intro to Computer Science - Building a Search Engine

Udacity's CS101: Intro to Computer Science - Building a Search Engine All soluti

Phillip 0 Feb 26, 2022
Extreme Lightwegith Portrait Segmentation

Extreme Lightwegith Portrait Segmentation Please go to this link to download code Requirements python 3 pytorch = 0.4.1 torchvision==0.2.1 opencv-pyt

HYOJINPARK 59 Dec 16, 2022
A PyTorch implementation of Mugs proposed by our paper "Mugs: A Multi-Granular Self-Supervised Learning Framework".

Mugs: A Multi-Granular Self-Supervised Learning Framework This is a PyTorch implementation of Mugs proposed by our paper "Mugs: A Multi-Granular Self-

Sea AI Lab 62 Nov 08, 2022
YoloAll is a collection of yolo all versions. you you use YoloAll to test yolov3/yolov5/yolox/yolo_fastest

官方讨论群 QQ群:552703875 微信群:15158106211(先加作者微信,再邀请入群) YoloAll项目简介 YoloAll是一个将当前主流Yolo版本集成到同一个UI界面下的推理预测工具。可以迅速切换不同的yolo版本,并且可以针对图片,视频,摄像头码流进行实时推理,可以很方便,直观

DL-Practise 244 Jan 01, 2023
Generate Cartoon Images using Generative Adversarial Network

AvatarGAN ✨ Generate Cartoon Images using DC-GAN Deep Convolutional GAN is a generative adversarial network architecture. It uses a couple of guidelin

Aakash Jhawar 50 Dec 29, 2022
PyTorch implementation of popular datasets and models in remote sensing

PyTorch Remote Sensing (torchrs) (WIP) PyTorch implementation of popular datasets and models in remote sensing tasks (Change Detection, Image Super Re

isaac 222 Dec 28, 2022
Knowledgeable Prompt-tuning: Incorporating Knowledge into Prompt Verbalizer for Text Classification

Knowledgeable Prompt-tuning: Incorporating Knowledge into Prompt Verbalizer for Text Classification

DingDing 143 Jan 01, 2023
This is the offical website for paper ''Category-consistent deep network learning for accurate vehicle logo recognition''

The Pytorch Implementation of Category-consistent deep network learning for accurate vehicle logo recognition This is the offical website for paper ''

Wanglong Lu 28 Oct 29, 2022
A simple code to convert image format and channel as well as resizing and renaming multiple images.

Rename-Resize-and-convert-multiple-images A simple code to convert image format and channel as well as resizing and renaming multiple images. This cod

Happy N. Monday 3 Feb 15, 2022
Implements pytorch code for the Accelerated SGD algorithm.

AccSGD This is the code associated with Accelerated SGD algorithm used in the paper On the insufficiency of existing momentum schemes for Stochastic O

205 Jan 02, 2023
This repo includes the supplementary of our paper "CEMENT: Incomplete Multi-View Weak-Label Learning with Long-Tailed Labels"

Supplementary Materials for CEMENT: Incomplete Multi-View Weak-Label Learning with Long-Tailed Labels This repository includes all supplementary mater

Zhiwei Li 0 Jan 05, 2022
Turn based roguelike in python

pyTB Turn based roguelike in python Documentation can be found here: http://mcgillij.github.io/pyTB/index.html Screenshot Dependencies Written in Pyth

Jason McGillivray 4 Sep 29, 2022
A platform to display the carbon neutralization information for researchers, decision-makers, and other participants in the community.

Welcome to Carbon Insight Carbon Insight is a platform aiming to display the carbon neutralization roadmap for researchers, decision-makers, and other

Microsoft 14 Oct 24, 2022
Hierarchical Uniform Manifold Approximation and Projection

HUMAP Hierarchical Manifold Approximation and Projection (HUMAP) is a technique based on UMAP for hierarchical non-linear dimensionality reduction. HU

Wilson Estécio Marcílio Júnior 160 Jan 06, 2023
Kaggle DSTL Satellite Imagery Feature Detection

Kaggle DSTL Satellite Imagery Feature Detection

Konstantin Lopuhin 206 Oct 29, 2022
✅ How Robust are Fact Checking Systems on Colloquial Claims?. In NAACL-HLT, 2021.

How Robust are Fact Checking Systems on Colloquial Claims? Official PyTorch implementation of our NAACL paper: Byeongchang Kim*, Hyunwoo Kim*, Seokhee

Byeongchang Kim 19 Mar 15, 2022