Official Implementation of SWAGAN: A Style-based Wavelet-driven Generative Model

Related tags

Deep Learningswagan
Overview

Official Implementation of SWAGAN: A Style-based Wavelet-driven Generative Model

acm arXiv

Teaser image

SWAGAN: A Style-based Wavelet-driven Generative Model
Rinon Gal, Dana Cohen Hochberg, Amit Bermano, Daniel Cohen-Or

Abstract:
In recent years, considerable progress has been made in the visual quality of Generative Adversarial Networks (GANs). Even so, these networks still suffer from degradation in quality for high-frequency content, stemming from a spectrally biased architecture, and similarly unfavorable loss functions. To address this issue, we present a novel general-purpose Style and WAvelet based GAN (SWAGAN) that implements progressive generation in the frequency domain. SWAGAN incorporates wavelets throughout its generator and discriminator architectures, enforcing a frequency-aware latent representation at every step of the way. This approach, designed to directly tackle the spectral bias of neural networks, yields an improvement in the ability to generate medium and high frequency content, including structures which other networks fail to learn. We demonstrate the advantage of our method by integrating it into the SyleGAN2 framework, and verifying that content generation in the wavelet domain leads to more realistic high-frequency content, even when trained for fewer iterations. Furthermore, we verify that our model's latent space retains the qualities that allow StyleGAN to serve as a basis for a multitude of editing tasks, and show that our frequency-aware approach also induces improved high-frequency performance in downstream tasks.

Requirements

Our code borrows heavily from the original StyleGAN2 implementation. The list of requirements is thus identical:

  • 64-bit Python 3.6 installation. We recommend Anaconda3 with numpy 1.14.3 or newer.
  • TensorFlow 1.14 or 1.15 with GPU support. The code does not support TensorFlow 2.0.
  • On Windows, you need to use TensorFlow 1.14 — TensorFlow 1.15 will not work.
  • One or more high-end NVIDIA GPUs, NVIDIA drivers, CUDA 10.0 toolkit and cuDNN 7.5.

Using pre-trained networks

Pre-trained networks are stored as *.pkl files.

Paper models can be downloaded here. More models will be made available soon.

To generate images with a given model, use:

# Single latent generation
python run_generator.py generate-images --network=/path/to/model.pkl \
  --seeds=6600-6625 --truncation-psi=1.0 --result-dir /path/to/output/

# Style mixing
python run_generator.py style-mixing-example --network=/path/to/model.pkl \
  --row-seeds=85,100,75,458,1500 --col-seeds=55,821,1789,293 \
  --truncation-psi=1.0 --result-dir /path/to/output/

Training networks

To train a model, run:

python run_training.py --data-dir=/path/to/data --config=config-f-Gwavelets-Dwavelets \ 
  --dataset=data_folder_name --mirror-augment=true

For other configurations, see run_training.py.

Evaluation metrics

FID metrics can be computed using the original StyleGAN2 scripts:

python run_metrics.py --data-dir=/path/to/data --network=/path/to/model.pkl \
  --metrics=fid50k --dataset=data_folder_name --mirror-augment=true

Spectrum Gap plots:

Coming soon.

License

The original StyleGAN2 implementation and this derivative work are available under the Nvidia Source Code License-NC. To view a copy of this license, visit https://nvlabs.github.io/stylegan2/license.html

Citation

@article{gal2021swagan,
author = {Gal, Rinon and Hochberg, Dana Cohen and Bermano, Amit and Cohen-Or, Daniel},
title = {SWAGAN: A Style-Based Wavelet-Driven Generative Model},
year = {2021},
issue_date = {August 2021},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
volume = {40},
number = {4},
issn = {0730-0301},
url = {https://doi.org/10.1145/3450626.3459836},
doi = {10.1145/3450626.3459836},
journal = {ACM Trans. Graph.},
month = jul,
articleno = {134},
numpages = {11},
keywords = {StyleGAN, wavelet decomposition, generative adversarial networks}
}

If you use our work, please consider citing StyleGAN2 as well:

@article{Karras2019stylegan2,
  title   = {Analyzing and Improving the Image Quality of {StyleGAN}},
  author  = {Tero Karras and Samuli Laine and Miika Aittala and Janne Hellsten and Jaakko Lehtinen and Timo Aila},
  journal = {CoRR},
  volume  = {abs/1912.04958},
  year    = {2019},
}

Acknowledgements

We thank Ron Mokady for their comments on an earlier version of the manuscript. We also want to thank the anonymous reviewers for identifying and assisting in the correction of flaw in an earlier version of our paper.

Dist2Dec: A Simplicial Neural Network for Homology Localization

Dist2Dec: A Simplicial Neural Network for Homology Localization

Alexandros Keros 6 Jun 12, 2022
Modeling Category-Selective Cortical Regions with Topographic Variational Autoencoders

Modeling Category-Selective Cortical Regions with Topographic Variational Autoencoders

1 Oct 11, 2021
MPLP: Metapath-Based Label Propagation for Heterogenous Graphs

MPLP: Metapath-Based Label Propagation for Heterogenous Graphs Results on MAG240M Here, we demonstrate the following performance on the MAG240M datase

Qiuying Peng 10 Jun 28, 2022
Simulate genealogical trees and genomic sequence data using population genetic models

msprime msprime is a population genetics simulator based on tskit. Msprime can simulate random ancestral histories for a sample of individuals (consis

Tskit developers 150 Dec 14, 2022
A Loss Function for Generative Neural Networks Based on Watson’s Perceptual Model

This repository contains the similarity metrics designed and evaluated in the paper, and instructions and code to re-run the experiments. Implementation in the deep-learning framework PyTorch

Steffen 86 Dec 27, 2022
D-NeRF: Neural Radiance Fields for Dynamic Scenes

D-NeRF: Neural Radiance Fields for Dynamic Scenes [Project] [Paper] D-NeRF is a method for synthesizing novel views, at an arbitrary point in time, of

Albert Pumarola 291 Jan 02, 2023
An e-commerce company wants to segment its customers and determine marketing strategies according to these segments.

customer_segmentation_with_rfm Business Problem : An e-commerce company wants to

Buse Yıldırım 3 Jan 06, 2022
deep learning model with only python and numpy with test accuracy 99 % on mnist dataset and different optimization choices

deep_nn_model_with_only_python_100%_test_accuracy deep learning model with only python and numpy with test accuracy 99 % on mnist dataset and differen

0 Aug 28, 2022
Code for Talk-to-Edit (ICCV2021). Paper: Talk-to-Edit: Fine-Grained Facial Editing via Dialog.

Talk-to-Edit (ICCV2021) This repository contains the implementation of the following paper: Talk-to-Edit: Fine-Grained Facial Editing via Dialog Yumin

Yuming Jiang 221 Jan 07, 2023
[AAAI2021] The source code for our paper 《Enhancing Unsupervised Video Representation Learning by Decoupling the Scene and the Motion》.

DSM The source code for paper Enhancing Unsupervised Video Representation Learning by Decoupling the Scene and the Motion Project Website; Datasets li

Jinpeng Wang 114 Oct 16, 2022
Custom IMDB Dataset is extracted between 2020-2021 and custom distilBERT model is trained for movie success probability prediction

IMDB Success Predictor Project involves Web Scraping custom IMDB data between 2020 and 2021 of 10000 movies and shows sorted by number of votes ,fine

Gautam Diwan 1 Jan 18, 2022
Computations and statistics on manifolds with geometric structures.

Geomstats Code Continuous Integration Code coverage (numpy) Code coverage (autograd, tensorflow, pytorch) Documentation Community NEWS: Geomstats is r

875 Dec 31, 2022
Sdf sparse conv - Deep Learning on SDF for Classifying Brain Biomarkers

Deep Learning on SDF for Classifying Brain Biomarkers To reproduce the results f

1 Jan 25, 2022
An implementation of the [Hierarchical (Sig-Wasserstein) GAN] algorithm for large dimensional Time Series Generation

Hierarchical GAN for large dimensional financial market data Implementation This repository is an implementation of the [Hierarchical (Sig-Wasserstein

11 Nov 29, 2022
A tensorflow model that predicts if the image is of a cat or of a dog.

Quick intro Hello and thank you for your interest in my project! This is the backend part of a two-repo application. The other part can be found here

Tudor Matei 0 Mar 08, 2022
SGoLAM - Simultaneous Goal Localization and Mapping

SGoLAM - Simultaneous Goal Localization and Mapping PyTorch implementation of the MultiON runner-up entry, SGoLAM: Simultaneous Goal Localization and

10 Jan 05, 2023
Pytorch Implementation of "Diagonal Attention and Style-based GAN for Content-Style disentanglement in image generation and translation" (ICCV 2021)

DiagonalGAN Official Pytorch Implementation of "Diagonal Attention and Style-based GAN for Content-Style Disentanglement in Image Generation and Trans

32 Dec 06, 2022
A Convolutional Transformer for Keyword Spotting

☢️ Audiomer ☢️ Audiomer: A Convolutional Transformer for Keyword Spotting [ arXiv ] [ Previous SOTA ] [ Model Architecture ] Results on SpeechCommands

49 Jan 27, 2022
The toolkit to generate auto labeled datasets

Ozeu Ozeu is the toolkit to autolabal dataset for instance segmentation. You can generate datasets labaled with segmentation mask and bounding box fro

Xiong Jie 28 Mar 28, 2022
Contrastive Feature Loss for Image Prediction

Contrastive Feature Loss for Image Prediction We provide a PyTorch implementation of our contrastive feature loss presented in: Contrastive Feature Lo

Alex Andonian 44 Oct 05, 2022